Uitnodiging

Op donderdag 3 juni 2010
om 15:00 uur verdedig ik
mijn proefschrift, getiteld

Graph-based Specification

Grap.h.-ba§Ed o . and Verification for
Specification and Verification for Aspect-Oriented Languages
Aspect-Oriented Languages

in Collegezaal 4 in
gebouw ‘Waaier’ van de

Universiteit Twente.

Voorafgaand aan de verdediging
zal ik om 14:45 een korte
toelichting geven op mijn

onhderzoek.

U bent van harte welkom bij de
verdediging en de receptie die

aansluitend wordt gehouden.

Vanaf 20:30 borrelen bij
café Central Park in Enschede

(RSVP voor 28 mei)

so8en8ue pajuali-129dsy J0j uonesyluap pue uonesydads paseq-ydelan

Tom Staijen
t.staijen@gmail.com

+31 6 10027649

ISBN 978-90-365-3041-5 Tom Staijen

usfieis woy

Paranimfen:
Jackelien Barelds en Rein Staijen

Graph-Based Specification and Verification for
Aspect-Oriented Languages

Tom Staijen

Ph.D. dissertation committee:

Chairman and secretary:
Prof. Dr. Ir. A.J. Mouthaan, University of Twente, The Netherlands

Promotor:
Prof. Dr. Ir. M. Aksit, University of Twente, The Netherlands

Assistent-promotor:
Dr. Ir. A. Rensink, University of Twente, The Netherlands

Members:
Prof. Dr. P.H. Hartel, University of Twente, The Netherlands

Prof. Dr. J.C. van de Pol, University of Twente, The Netherlands
Prof. Dr. D. Janssens, University of Antwerp, Belgium
Prof. S. Katz, The Technion, Israel

CTIT Ph.D. thesis series no. 10-171.

Centre for Telematics and Information
Technology (CTIT), P.O. Box 217 -
7500 AE Enschede, The Netherlands.

Ty, . IPA Dissertation Series 2010-04
a e The work in this thesis has been carried
8l r r '(’_-_ I out under the auspices of the research
L —_— ——= school IPA (Institute for Programming
5, s & research and Algorithmics).

Q-O ‘

o
h"\'“l; En AV

Qv
=&

ISBN 978-90-365-3041-5
ISSN 1381-3617 (CTIT Ph.D. thesis series no. 10-171)
http://dx.doi.org/10.3990,/1.9789036530415

Cover design by Tom Staijen
Printed by Ipskamp Drukkers, Enschede, The Netherlands
Copyright (©) 2010, Tom Staijen, Arnhem, The Netherlands

GRAPH-BASED SPECIFICATION AND VERIFICATION
FOR ASPECT-ORIENTED LANGUAGES

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof. dr. H. Brinksma,
volgens besluit van het College voor Promoties
in het openbaar te verdedigen
op donderdag 3 juni 2010 om 15:00 uur

door

Tom Staijen

geboren op 27 januari 1978
te Stad Delden

Dit proefschrift is goedgekeurd door

Prof. Dr. Ir. M. Aksit (promotor)
Dr. Ir. A. Rensink (assistent-promotor)

”Common sense, do what it will, cannot avoid being surprised oc-
casionally. The object of science is to spare it this emotion and create
mental habits which shall be in such close accord with the habits of the
world as to secure that nothing shall be unexpected.”

— Bertrand Russell

Acknowledgements

The first person I would like to thank is my daily supervisor and assistant-promoter
Arend Rensink. During the past five years, Arend has taught me a great deal
about formal methods in general and about graph transformation, about writing
proofs and to not fear Greek symbols. I also want to thank him for listening and
understanding when things did not go too well, and for triggering me when things
did not go very fast. However, the most precious thing I need to thank Arend for,
is the enthusiasm and joy I have in specifying systems formally, particularly for
the purpose of solving puzzles.

I have carried out my Ph.D. studies at the software engineering group lead my
Mehmet Aksit. The sprout of his mind “Composition Filters” has found its way
into this thesis. His endless enthusiasm has been a continuous motivation, his
presence a motive for generalisation, always to look for a “bigger picture”. His
feedback, advice and guidance can be found throughout this thesis.

I like to thank the members of my Ph.D. committee: Shmuel Katz, Dark Janssens,
Jaco van de Pol and Pieter Hartel. Their useful comments enabled me to dramat-
ically improve this thesis.

I would like to thank all members of the software engineering group and the formal
methods and tools group. They have provided me with useful feedback during our
regular seminars and provided me with a pleasant working environment and of
course a number of unforgettable social events. In particular, I want to thank
ex-fellow-Ph.D. student Pascal Diirr with whom I went on some awesome hiking
trips, Ivan Zapreev, we “recognised” each other in Marktoberdorf and have had
the best times since, and Wilke Havinga, with whom I worked in the Network of
Excellence on Aspect-Oriented Software Development.

I also want to thank the many people in the European Network of Excellence
on Aspect-Oriented Software Development for providing a forum of enthusiasts

vii

about AOSD. In particular, I would like to thank fellow participants of the Formal
Methods Lab: Shmuel Katz, Emilia Katz, Mario Siidholt, and Remi Douance.

I would like to thank Ellen Roberts-Tieke, Joke Lammerink and especially Jeanette
Rebel-de Boer for their invaluable administrative support.

Finally, I want to thank my family:

My dear girlfriend and paranymph Jackelien, whom I created a lovely home with
and who has supported me through most of the writing phase. The foresight of
living with you without the burden of writing has motivated me through the final
year.

My brother Rein, with whom I enjoyed so many relaxing evenings and weekends,
setting the PhD work aside for a while. Charge!

And last, but most definitely not the least, my father and paranymph Rein and
my mother Thea, who have encouraged and supported me in practically any way
though the good and bad times of the past ten years of study. Dank jullie wel.

viii

Abstract

Aspect-oriented software development aims at improving separation of concerns
at all levels in the software development life-cycle, from architecture to code im-
plementation. In particular, aspect-oriented programming addresses separation
of concerns at the implementation level, by allowing the modular expression of
crosscutting concerns.

In this thesis we strive to develop verification methods specifically for aspect-
oriented languages. For this purpose, we model the behaviour of these languages
through an operational semantics. We use graph transformations to specify these
semantics. Graph transformation has mathematical foundation, and provides an
intuitive way to describe component-based systems, such as software systems. In
addition, graph transformations have an executable nature, and can be used to
generate the execution state space of programs. We use these state spaces for the
verification of programs with aspects.

We start by defining an improvement of specification by rule-based systems. Pure
rule-based systems typically consist of a single, unstructured set of rules. The
behaviour of such systems is that all rules are applicable in every state. Rules can
then only be forced into a certain order of application by adding special elements
to the states, which are tested for within the rules. In other words, control over
rule applicability is not explicit but has to be encoded in the state, which reduces
understandability and maintainability of the rule-based system as a whole. We
propose so-called control automata, which can be added on top of pure rule-based
systems. The resulting behaviour is defined as the product of the original state
space and the control automaton. Our control automata include so-called failure
transitions, representing the observation of the non-applicability of one or more
rules. The result is a reactive semantics for control expressions, which is distinct
from the usual input-output semantics. Control automata may introduce artificial
non-determinism into the behaviour, which is an undesirable effect. We introduce
guarded control automata to get rid of this effect, and we define a semantics-

ix

preserving transformation from ordinary control automata to guarded ones.

In the next part of the thesis, we specify the run-time semantics of a number of
aspect-oriented languages, namely of (1) Composition Filters, (2) Featherweight
Java with assignments with an aspectual extension, and (3) a subset of multi-
threaded Java extended with a subset of AspectJ. We illustrate how such a graph-
based semantics can aid in understanding the run-time behaviour of a language.
Moreover, we show that such a semantics can be used to simulate a (partial)
program and we expose the steps involved in the execution of such a program.
We illustrate that this executable nature benefits the rigour of the specification
method; mistakes are easily detected by simply testing the simulation. Finally,
we show that the resulting labelled transition systems can be used for existing
verification methods.

Then, we propose two novel approaches that address complications caused by the
use of aspect-oriented programming.

The first approach addresses a problem that can occur in many aspect-oriented
languages. Aspects that in isolation behave correctly may interact when being
combined. When interaction changes an aspect’s behaviour or disables an aspect,
we call this interference. One particular type of interference occurs when aspects
are applied to shared join points, since then the ordering of the aspects can also
influence the behaviour of the composition. We present an approach to detect
aspect interference at shared join points. The approach is based on simulation of
all orderings of the advices that are scheduled for execution at a shared joinpoint.
A confluence analysis is performed on the resulting state space to detect whether
the execution order has affected the resulting states.

The second approach addresses the problem of verification of dynamic properties
of systems. These properties can only be verified by simulating the execution of
the system: an execution semantics is required. More specifically, we deal with
properties that require tracking of individual objects over time. We stress the
need for automatic verification of properties (or constraints) for aspect-oriented
programming because of the obliviousness properties of such languages: a devel-
oper cannot tell from looking at the base code that aspects are executed. When
software evolves, existing functionality may break unintentionally. We propose
to augment an existing graph-based execution semantics with special verification
rules. These rules can, when needed, add information to the graphs for tracking
of objects. The properties are specified as events (or interactions) related to roles.
Once these roles are identified in the syntax, the program can be verified regard-
less of implementation details. We show that the approach can be applied to both
object-oriented and aspect-oriented implementations.

Contents

0 Introduction|
[L.1 Aspect-Oriented Programmingl

[1.1.1 Separation of Concerns|

1.1.2 AOP = Quantification & Obliviousness|

[1.1.3 Symmetric vs. Asymmetric AOP|

1.2 Motivation: The disadvantages of Obliviousness

I1.2.1 Aspect Interferencel.

1.3 Verification and Graph Transformation|.

2.2 Graph Transformations|
2.2.1 Graphs and Morphisms|
[2.2.2 Graph Production Rules|.

xi

© N O Ot e W NN =

........... 10

2.3 Rule Systems and Automata], 24
231 Automatal oo 25
2.3.2 System Automatal 000, 26
2.3.3 Control Automatal 29
2.3.4 Combining System Behaviour and Controll. 30

2.4 Control Language|. Lo 30
241 Semantics o oo 32

2.5 Guarded Control Automatal, 37
2.5.1 Equivalence|o 41

[2.6 Implementation & Usagel. 45

27 Conclusions 47
RTI RelatedWorkl. L. 47

2.8 Future Worklo oo o 49
281 Contributions L 49

13 An Execution Semantics for Composition Filters| 51

B TIntroductionl. 51

[3.2 Introduction to Composition Filters| 52
13.2.1 The Composition Filters Model| 52
8.2.2 The Composition Filters Languagel 55
.23 Meta Filtersl. o o000 59

[3.3 The Goal and the Approach| 60
B3I Goallo 61
8.3.2 Approachl 61

[3.4 Abstract Syntax Graphs|o oo 63

B.5__Control Flow Semanticd 65
3.5.1 Control Flow Constructionl 65
13.5.2 The Control Flow Specification Languagel 66

xii

854 Example|.o oo

3.6 Execution Graphs| L.
3.6.1 Value Graph|,
3.6.2 Frame Graph| 0.

4.2 Assignment Featherweight Java with Around Advice|

4.2.1 The Featherweight AspectJ Language|

4.3 Graph-Based States|
4.3.1 AFJ Program Graph|.

4.3.2 Aspect Program Graph|
4.3.3 Run-time Graph| 0oL

4.4 Language Semantics| oL

5.2.1 Aspect Interference at Shared Join Points|
9.2.2 Example Aspects| oL
9.2.3 Example Code| 0.

[5.3 Approach to Aspect Interterence Detection|

5.3.1 Analysis|.

5.3.2 Implementation Requirements|.

[5.4 Extended Composition Filters Semantics|.

9.4.1 Message Creation|.

5.4.3 Non-Deterministic Scheduling of Filtermodules|
b.4.4 Filter Actions of the Examplel

[5.5 Experimentation| oL

Xiv

5.5.1 Generated State Spaces| 150

p.-5.2 Analysis Report| 0. 151

5.6 Evaluation of the Approach| 155
15.6.1 Detection of Interferencel. 155
9.6.2 Modularity] o 156
b.6.3 Usability] 156
b.6.4 Scalability|. o oo 157
5.6.5 Tool support| 157

b7 Conclusionsl oo 158
BT RelatedWorkl. 158
B72 Future Workl oo 160
b3 Contributionl 162

16 Verification of Dynamic Constraints| 165
6.1 Introductionl. 165
6.2 Motivation by Example: the Observer Pattern| 167
621 The Observer Patternin Javal 167

6 Aspectd| oo 169

6.2.3 The Observer Pattern using Aspectd| 172

6.3 Approach to Verification of Aspect Oriented Programs| 176
................................ 180
[6.41 Multi-Threaded Javal 180
642 Java Semanticsl oo 182
6.4.3 Aspects| 190
6.4.4 Ad Hoc Rules: Collection Handling|. 195
6.4.5 Examplel. o 197

6.5 Verification of Observer Pattern Implementations| 198
6.5.1 Harness Semanticsl 199
6.5.2 Verification Semantics| o000 201

XV

[6.6 Experimentation| Lo oo 204

[6.7 Evaluation of the Approach| 207
6.7.1 Java and Aspectd support|. 207

16.7.2 Ability to Verify Dynamic Constraints| 207

6.7.3 Implementation Independencel. 208

674 Automationl. 208

[6.7.5 Scalability|. oo oo 209

6.8 Conclusions 209
681 RelatedWorkl 209

682 Future Workl oo 210

6.8.3 Contributions 0oL 211
[7Conclusions| 213
(7.1 Introductionl. 213
[7.2 Controlled Graph Transtormation|. 214
[7.3 Graph-Based Specification of AOP Execution Semantics| 214
[7.3.1 Composition Filters| 215

[7.3.2 Featherweight AspectJ|. 215

[7.3.3 Java and Aspectd|.o oL 216

(3.4 Future Workl oo 216

[7.4 Analysis of Aspect Interterence on Shared Joinpoints| 216
[7.5 Analysis of System Properties under Concurrent Execution| 217
(7.6 Reflection and Future Work| 218
221
Bibliography] 225

Xvi

Chapter 1

Introduction

Aspect-oriented programming (AOP) languages aim to improve the modularisa-
tion of concerns in the specification of software systems. In this thesis we strive
to develop verification methods specifically for such languages. For this purpose,
we model the behaviour of these languages using an operational semantics. We
use graph transformations to specify these semantics. Graph transformation has
mathematical foundation, and provides an intuitive way to describe component-
based systems, such as software systems.

This introductory chapter is organised as follows: in Section [1.1] we elaborate on
aspect-oriented programming, and the phenomenon of crosscutting to which it
offers a solution. In Section [I.2] we motivate the work in this thesis: we elaborate
on the disadvantages of aspect-oriented programming and what kind of problems
are caused specifically by using AOP. In Section we give some background on
verification, and the choice of using graph transformation for this purpose. Finally,
in Section we provide an outline of the rest of this thesis.

1.1 Aspect-Oriented Programming

Aspect-oriented software development (AOSD) aims at improving separation of
concerns (SoC) at all levels in the software development life-cycle, from require-
ments engineering and architecture to code implementation. In particular, aspect-
oriented programming addresses SoC at the implementation level, by allowing the

2 Chapter 1. Introduction

modular expression of crosscutting concerns. Such a modular representation of a
crosscutting concern is called an aspect.

1.1.1 Separation of Concerns

Separation of concerns is one of the key goals in the field of software and system
engineering. The term was probably coined by Dijkstra in 1974 [Dij74] — later
published in [Dij82] — as “the only effective way of ordering one’s thoughts”.

In computer science, separation of concerns is the process of separating a computer
program into distinct features that overlap in functionality as little as possible.
All programming paradigms aim at improving SoC. For example, object-oriented
programming languages can separate concerns into classes. Possible motivations
of SoC are to reduce complexity, and to enhance adaptability and evolvability.

A concern is defined as “a focus of interest pertaining to the development of a
system under design, its operation or any other matters that are important to
one or more stakeholders” [vdBCCO05|. In this context, separation of concerns is
considered ”the study and realisation of each concern in isolation for the sake of
its own consistency” [vdBCCO3].

Concerns are typically identified in the early phases of the development life-cycle
from the requirements of all stakeholders. Later on, a decomposition into modules
is chosen for the implementation. If the identified concerns do not match the
decomposition structure, such a mismatch between the design (concerns) and the
implementation (modules) may cause one or more of the following issues:

1. Tangling occurs when concerns are mixed together in one module [vdBCC05].
In a modular implementation, each module (or group of modules) exactly
describes a single concern. Tangling negatively influences the reusability of
a module. A component mixing concerns is not properly reusable because
the composition of concerns in this tangled code is likely to be application
specific.

2. Scattering is the occurrence of elements that belong to one concern in mod-
ules encapsulating other concerns [vdBCC05]. In other words, code corre-
sponding to one concern is spread out over several modules. This negatively
influences the maintainability of a concern; making changes and finding er-
rors is much easier when all related code is in one place. Code Replication is
the occurrence of (nearly) identical code in multiple places, often resulting
from a pattern of copying and editing existing source fragments.

3. Crosscutting is the combination of tangling and scattering. A concern that
cannot be modularly represented within the chosen decomposition structure

1.1. Aspect-Oriented Programming 3

due to tangling and scattering is called a crosscutting concern.

Aspect-oriented programming aim to address the issues identified above. The
typical demonstrative example of AOP is the Logging concern. Typically, calls to
a logging method are added throughout the code to write certain information to
a file or screen. With AOP, this method and a specification of what to log are
specified in a single module, called an aspect. In the remainder of this section, we
explain the basic ideas of AOP.

1.1.2 AOP = Quantification & Obliviousness

Aspect-oriented programming languages enable the modular expression of cross-
cutting concerns by means of supporting quantification over a program. They
allow programming by making quantified assertions over programs written by
programmers oblivious to such assertions [FF05].

Quantification

Quantification can be understood as follows: “in programs P, whenever a condition
C arises, perform action A” over conventionally coded programs P. Aspects may
perform actions at one or more points during the execution of a program. Such
"well-defined places during the execution of a program where additional behaviour
can be attached” [vdBCCOS] are called joinpoints. Expressing quantification is
done by so-called pointcuts. A pointcut describes a set of joinpoints. The kind
of points (i.e. event types) that can be selected in the program depends on the
joinpoint model of the aspect language. Typically, pointcuts can express predicates
over the syntax(-tree) of the program; most aspect languages also allow predicates
over the run-time state of a program. Besides a set of joinpoints, a pointcut also
describes the scope of extension at the joinpoints. The additional behaviour that
is executed at a joinpoint is called an advice. Advice is traditionally specified to
be executed before, after or around the selected joinpoint. A common feature of
the advice language — commonly used in around advice — is a so-called proceed
statement; executing this statement continues the execution of the intercepted
joinpoint (i.e. the event that triggered the execution of the advice).

Obliviousness

Another property of AOP languages we find important is obliviousness. ”Obliv-
iousness states that you can’t tell that the aspect code will execute by examining
the body of the base code” [FE05]. Better aspect languages minimise the degree

4 Chapter 1. Introduction

to which developers have to change their behaviour (i.e. implementation style) to
realise the use of aspects. In other words: when there are no constraints on the
way the base system is coded, aspects can always be added later.

1.1.3 Symmetric vs. Asymmetric AOP

The distinction between base system and aspects comes from the traditional design
of aspect languages as an extension to “normal” object-oriented languages, the so-
called base language. We refer to the base system as the part of the system under
advice of an aspect, whereas the “aspects” are the part of the system with an
advising role. Typically, the base system is the part that is implemented in the
base language, whereas the aspects are the parts implemented using the aspect
language (i.e. aspect modules containing pointcut and advice declarations).

This distinction is not always straightforward; certain languages allow pointcuts
to select joinpoints in the execution of an advice. In that case, the aspect code
under advice has the role of the base system.

Languages that support this distinction fall in the category of asymmetric aspect
languages. There are also symmetric aspect languages, that make no distinction
between base and aspect, for example by declaring everything as an aspect. How-
ever, these languages do not fall in the scope of this thesis. In this thesis, we
assume that the base system is the part that is implemented in the base language.
Symmetric AOP tries to come close to the “grand vision” of AOP, but asymmetric
has simply turned out to be more pragmatic.

Also, the properties of quantification and obliviousness are not limited to object-
oriented programming languages. Aspect-oriented languages can just as well be
designed as an extension to procedural languages. In this thesis, we only consider
aspect languages that are extensions to object-oriented languages.

Exporting Behaviour rather then Importing

Another way to look at the difference between object-oriented and aspect-oriented
languages is the way concerns are composed. In object-oriented programming lan-
guages, functionality of other concerns is imported (or invoked) by using method
calls. In AOP however, functionality of a concern is exported to other concerns
(e.g. specific locations in the program).

1.2. Motivation: The disadvantages of Obliviousness 5

Interface AOP vs. fine-grained AOP

Another distinction that can be made between aspect languages is by the level
at which they extend the base program. Some languages have a very fine-grained
joinpoint model, which are typically suitable for crosscutting concerns like logging
and debugging. Other languages try to employ AOP on the interface of objects,
i.e. as a composition mechanism. They obey the encapsulation of objects. In this
thesis we will see both types of languages.

Weaving

Where AOP languages allow crosscutting concerns to be expressed as isolated
modules through special language extensions, they are typically executed as tra-
ditional programs, i.e. by using no other instructions than those available in
the extended base language. The process of composing the base system and the
aspects is called weaving. Weaving is defined as "the process of composing core
functionality modules with aspects, thereby yielding a working system” [vdBCCO05].
Weaving is typically performed at compile-time — e.g. by in-lining aspect code
or invocations to this code — but other approaches exist that weave at run-time.
We use weave-time to indicate the moment of weaving, regardless of it being at
compile-time or run-time.

1.2 Motivation: The disadvantages of Obliviousness

Since AOP increases separation of concerns at the implementation level, the ben-
efits of AOP are the same as the advantages of SoC. Qualities like reusability,
adaptability, maintainability and evolvability are all properties that benefit directly
from a successful mapping of concerns to implementation modules; they benefit
from SoC and thus from AOP, which aim to achieve this at the implementation
level.

SoC also lowers the complexity of concerns (by untangling tangled code and iso-
lating scattered code), thereby increasing the readability and understandability of
an isolated concern. This isolation, however, is the cause of the obliviousness
property of AOP. When there is no sign of the aspect at the code-locations where
it ”applies”, it becomes harder to understand the composed behaviour of the base
program and the aspects as a whole.

Although some may claim that it should not be necessary to know of the existence
of aspects, not knowing about them may quickly result in a programmer breaking
the application. Many aspect languages are syntax-oriented; small changes in the
base code may cause an aspect to disengage from a location in the base program,

6 Chapter 1. Introduction

or match a previously unmatched location. This problem is called the “fragile
pointcut problem”.

The actual problem here is that the complexity of the system as a whole is re-
lated to the complexity of the used composition mechanisms. AOP introduces
new composition mechanisms, which may not be understood by all developers.
This is directly related to the obliviousness property that characterises AOP lan-
guages. This property tends to be a disadvantage when reading code and thereby
understanding the system as a whole.

Another problem of obliviousness is that, although it does not imply that develop-
ers are unaware of the aspect that advises a certain piece of base code, they may
very well be. Obliviousness does not guarantee that changes to the base system
will not cause an aspect to behave differently than intended. In large development
teams, developers may be responsible for different software artifacts. Certain de-
velopers may be unaware of the aspects advising “their” base code, or the usage of
aspects in the system in general. They may change the code and thereby manipu-
late the behaviour of the aspect. The resulting behaviour would be correct w.r.t.
the specification of the aspect, which was made under the assumptions made for
the old base system, but might not be the intended result.

The distinction between (any particular) base language and aspect language may
result in developers becoming experts in one or the other. Base system developers
that should be aware of the aspects advising their base code, may not even un-
derstand the execution semantics of these aspects, and the effects resulting from
possible changes to the base system.

To be able to verify the correctness of a system with aspects requires the devel-
opment of verification techniques for these languages. In this thesis, we focus on
such verification techniques. In particular, we want to be able to detect unintended
behaviour of aspects, which can be caused by aspect interaction.

1.2.1 Aspect Interference

We have already explained how the introduction of new composition mechanisms
is a disadvantage for understanding the behaviour of the system as a whole. This
becomes even worse when multiple aspects are applied to a system. Unexpected re-
sults can emerge: two or more aspects behaving correctly when applied in isolation,
may interact in an undesired matter when applied together. This phenomenon is
called aspect interference. Interference between aspects occurs when one aspect
disables or changes the behaviour or applicability (i.e. the composition with the
base system) of another aspect. There are different causes for aspect inference:

e At weave-time, the selected set of join points of one aspect can be changed

1.3. Verification and Graph Transformation 7

by another aspect;

o At weave-time, aspects that change the static structure of a program (intro-
ductions) can cause ambiguous weaving - resulting in different programs -
depending on the weaving order [HNBAOQT].

e At run-time, one aspect can modify fields or variables, affecting the be-
haviour of another aspect;

e At run-time, one aspect can change the control-flow of the system, causing
a join point of another aspect to never be reached.

Here, the problems of obliviousness regarding the unawareness of the existence of
aspects is complicated even further; not only should a developer realise that multi-
ple aspects advice the same join point, but also that the composed behaviour may
not be the desired behaviour. There are already some tools that verify whether
overlapping pointcuts exist in a program. However, understanding the composed
behaviour is still very difficult.

1.3 Verification and Graph Transformation

In this thesis, we introduce verification techniques for problems that are unique
to aspect-oriented programming languages.

System verification aims at verifying whether a system satisfies a set of require-
ments. This can be done in many different ways. In this thesis, we focus on formal
verification.

Formal verification techniques provide means to determine whether a system is
correct with respect to a set of requirements, often called properties, based on
a model of the system. One such technique is model checking, where the central
idea is to verify all possible executions of a model of the system and check whether
they satisfy the required properties.

Model checking [CGP99] is based on a modal extension of propositional logic.
The properties are specified on the base level by propositions that are satisfied
by a subset of the model being checked. The information in each of the states is
abstracted to the subset of properties that is satisfied there. Only the information
remains that is considered interesting for verification. On top of that we define a
modal logic, in which the properties of the lower level are treated as propositions.

To obtain a model of the system, we specify the behaviour of the system using a
formal specification technique. In other words, we specify a formal semantics of
the language. Research on formal semantics started in the 1960s. Most resulting

8 Chapter 1. Introduction

methods are based on either (1) denotational semantics, where the meanings of
expressions are described as mathematical objects called denotations, or (2) oper-
ational semantics, which describes how a program is interpreted as a sequence of
computational steps.

The traditional approach for defining an operational semantics for a program-
ming languages is Strucural Operation Semantics (SOS), originally introduced by
Gordon Plotkin in [Plo81]. SOS specifications take the form of a set of inference
rules which define the valid transitions of a composite piece of syntax in terms of
the transitions of its components. These formal definitions can be used for the
understanding and analysis of the behaviour of programs. However, the mainly
textual notation and the underlying mathematics does not easily let SOS be used
by “regular” software developers.

In this thesis, we use graph transformation for the specification of operational se-
mantics of programming languages. That is, we specify the run-time behaviour of
programming languages using graph transformation rules; these can then be used
to simulate the execution of a program when specified as a graph that corresponds
to this program.

Graph transformation was first introduced in the early 1970s [EPS73| to generalise
Chomsky’s string grammars. Graph transformations provide an intuitive and
formal way of specifying local graph changes — the creation and deletion of graph
elements — in a rule-based manner.

We believe that graph transformation provides a natural way for defining the
operational semantics of programming languages. Especially for object-oriented
languages, graphs provide a natural way to represent program states. States based
on objects can easily be represented as graphs, where the objects are nodes, and
edges represent the relationships between objects. State changes are naturally rep-
resented as graph transformations. The visual notation of graph transformations
may be more compelling and intuitive to programmers.

Another advantage is that, with the long history of graph transformation, tool
support exists for specifying graph transformation rule systems and using it for
analysis. One such tool is the GROOVE Tool Set [Ren04]. This tool is unique
in its ability to perform an exhaustive exploration on the possible applications of
graph transformation rules given a certain start graph. This is then represented as
a graph transition system, a special labelled transition system (LTS) with graphs
as states and rule names as labels.

When we use graph transformation rules to specify the run-time behaviour of a
programming language, this “state space” represents all possible executions of a
program specified in that language when it is represented as a graph, and can be
used for the analysis and verification of that program. For example, the LTS lends
itself directly for model checking (see [KRO6]).

1.4. Outline of the Thesis 9

1.4 Outline of the Thesis

This thesis is structured as follows.

Chapter 2 serves two purposes. First, we introduce the theory of graph trans-
formation, to give an intuition and to be able to understand the meaning of the
graph transformation rules in this thesis. Then, we extend the exploration of rule
applications with a notion of control. We define a control language over rules, that
specifies the order in which rules can be applied. This way, control is specified as
a separate artifact instead of having control information in the graphs and rules.
This benefits the simplicity and readability of the rules.

Chapter 3 gives an introduction to the aspect-oriented programming language
Composition Filters. The design of this language lends itself very well for verifica-
tion. In this chapter we define a graph transformation-based operational semantics
for the run-time behaviour of the language, and show how this can be used to sim-
ulate joinpoint execution. The semantics can serve as a reference for the language
semantics.

Chapter 4 defines an operational semantics of Featherweight Java with assignments
and a simple aspectual extension using method-call interception and around advice
with proceed. We use this semantics to illustrate the advantages of using graph
transformation for defining language semantics operationally. We show that a
graph transformation based semantics can be consistent with a structural opera-
tion semantics of the same base language, and illustrate the advantages of our se-
mantics compared to SOS: the directly executable nature of graph transformations
and its visual nature aiding in the completeness, readability and understandability
of the semantics. These advantages indirectly benefit the rigour of the approach:
fewer mistakes are made, and any mistakes that are made are easily found during
simulation. The work has been published in [SR09].

Chapter 5 discusses our approach to detect a special kind of aspect interference,
namely when it happens at so-called shared joinpoints. Shared join points are
joinpoints that are selected by pointcuts of more then one aspect. We show that, by
simulating all possible orderings of advices scheduled for execution at the joinpoint,
we can detect whether the advices interfere. When no interference occurs, the
resulting states after execution of the advices are equal. Because we use graph
transformation, we can use isomorphism as a criterion for the equality of states.
The work described in this Chapter — combined with the work in Chapter 2 —
has been published in [ARSQ09], where it received a Best Paper Award.

Chapter 6 discusses our approach to verify system properties on systems with
aspects. Because aspects can be introduced during the design of a system, but
also by refactoring the implementation, we propose a verification approach that
is oblivious to implementation details (e.g. whether OOP or AOP is used). We

10 Chapter 1. Introduction

operational language semantics
Graph Control (OO) base language aspect-oriented
Transformation (Ch2) language extension
AFJ FAJ
(Ch4) (Ch4)
Formal Specification Language
Composition
‘—used for——— P Filters
(Ch3)
Java
(Che6)
AspectJ
Multi-threading (ChG)
(Ch6)
put Iinto

Verification Methods graph transformation rule simulator

Aspect Dynamic generates
Interference Property
Detection Verification Execution
(Chs) (Che) | [Model

Figure 1.1: Relations among the Contents of the Thesis

illustrate the approach with different implementations of the observer pattern in
Java and AspectJ, and define an ad-hoc operational semantics to simulate multi-
threaded usage of the given implementations. For the system properties that need
to be verified, additional rules are used. These rules typically match the graph-
based run-time state representation — objects with a certain role, relationships
between objects, and interactions between objects. By analysing the occurrence
of these rules in the generated graph transition system, we can verify if the system
properties hold.

Chapter 7 concludes this thesis by shortly summarising the main results and con-
tributions of our work. It discusses some of the limitations of our approach and
looks ahead at some research topics that are useful extensions to the work.

1.4.1 Overview

The different subjects in this thesis and their correlation are shown in Figure
We extend the graph transformation formalism with a notion of Control.
Then, we use graph transformations as a formal specification language to define

1.4. Outline of the Thesis 11

the operational semantics of a number of different (object- and aspect-oriented)
languages. Then, these semantics are used to generate an execution model of an
input program. Finally, we define two different verification methods that can be
applied to these execution models.

Chapter 2

Controlled Graph Transformation

2.1 Introduction

The use of rule-based specification and programming languages to model com-
plex systems is a commonly accepted approach in the field of computer science.
Examples are term rewrite systems [Der(05], Petri nets [GR82] and graph rewrite
systems [Roz97)]. In rule-based systems, applying a rule in a state typically results
in another state, and all rules are scheduled — allowed to be matched and applied
— in every state at all times. The result of exploring all possible rule applications
is the full state space.

Rules are stand-alone entities; they require to specify exactly the conditions re-
quired for the rule to be applied. Such conditions may become very complex and
may use control information that is added to the state by other rules. Such infor-
mation quickly complicates the comprehensibility of the entire rule system, and
introduces hidden dependencies between rules.

We work in the setting of graph transformations. Graph transformation is a formal
specification technique that supports rule based specification as well as an intuitive
visual representation of states and rules. We use this approach for the specification
of systems. We use graph grammars to generate a reactive view on the system.
Graph grammars are used to generate the full state space of the system, which
is used for verification by, for instance, model checking. We use the GROOVE
[Ren04] toolkit for the generation of the full state space, as it is unique in its

13

14 Chapter 2. Controlled Graph Transformation

capability to do so.

This chapter serves two purposes. First, it provides an introduction to graph
transformations. It gives formal definitions of graphs, rules, and transformations
as well as the visual notation for rules used in GROOVE. The other part describes
a contribution to extend GROOVE with control expressions. The results of this
work are not restricted to GROOVE or graph transformation in general, however,
but extend to arbitrary rule-based languages.

In the context of graph transformation, extending the rule system with a mech-
anism for controlling rule application is very popular. Such a mechanism, often
called control expressions, can increase the ease of specification a great deal. One
of the main advantages of using explicit control expressions is that it reduces the
amount of control information required in the states and rules. Also, it provides
an explicit view on dependencies between rules.

Typically, control expressions in the field of graph transformations are equipped
with an input-output semantics, motivated by an interest in the transformational
behaviour of a system. This implies that the meaning of a graph grammar is taken
to be a binary relation between input graphs and output graphs. As mentioned
earlier, we want to use graph transformations to generate a reactive view of the
system. Therefore, we need control expressions with a reactive semantics.

We propose an approach to specify control expressions that satisfies the following
main requirements:

e The control expressions must have a reactive semantics to preserve the re-
active view of the system, because we are interested in verification based on
this view.

e The control expression should not introduce spurious non-determinism. Any
existing assumptions about the generated state space should be preserved.
We explain later how introducing non-determinism can influence the seman-
tics of a rule system (i.e., the trace language of the state space).

e The control expressions should be specified without reference to any partic-
ular rule system. This also enables the approach to be usable for different
kinds of rule-based systems.

In this work, we introduce a control mechanism with a reactive semantics. A
control language is defined for the purpose of specifying control expressions over
rules in a simple and intuitive manner. These control expressions are translated
to so-called control automata, which can be added on top of pure rule systems
(rule systems where allowing the application of a rule is purely based on the rule
itself). Control automata include transitions that specify the scheduling of a

2.2. Graph Transformations 15

rule, and so-called failure transitions that describe the observation of a set of
rules being non-applicable. The resulting behaviour is defined as the product
of the original state space and the control automaton. Because the product with
ordinary control automata can introduce spurious non-determinism, we also define
a variation called guarded control automata, which do not have this undesirable
effect.

In the next section we introduce the basic concepts underlying the graph trans-
formation technique. In Section we define control automata and show the
result of combining such an automaton with system automata. In Section [2.4] we
present a control language, and show how programs written in this language can
be translated to control automata. In Section [2.5| we present guarded control au-
tomata, and we prove them to be equivalent to the normal automata. In Section
we illustrate the usage of the approach. Finally, in Section [2.7] we discuss our
contribution, related work, and future work.

2.2 Graph Transformations

In this section, we introduce the basic concepts and underlying techniques of graph
transformation. First, we introduce the concept of graphs and morphisms. Then
we explain graph transformation rules and the transformation mechanism. Also,
we explain the visual notation for rules, which comes from the GROOVE tool,
and is used for the rules throughout this thesis.

2.2.1 Graphs and Morphisms

Graphs essentially consist of boxes — called nodes or vertices — and arrows —
called edges. Graphs can be used to model practically any structure. Graphs are
especially suitable for modelling structures that are dynamic in size, because they
can have any number of nodes and vertices. In the next chapter, we show that
graphs can very well be used to represent software systems. Graph transformations
are changes to a graph. For rule-based systems in general, transformations are
described by rules. For graphs, such rules are often referred to as graph production
rules.

We now define the concept of a graph. We assume a known set of labels Label. A
label is a name used to label the edges of our graphs.

Definition 2.1 (graph). A graph over Label is a tuple (N, E), where N is a finite
set of nodes and E C N x Label x N is a finite set of edges.

16 Chapter 2. Controlled Graph Transformation

An edge e € F is a triple (n1,l,n2) consisting of a source node src(e) = nq, a
label lab(e) = I, and a target node tgt(e) = na. An edge with an identical source
and target edge (i.e. src(e) = tgt(e)) is called a self-edge. The set of all graphs is
indicated with G.

For the definition of a graph production rule and the transformation generated by
such a rule, we require the concept of a graph morphism, which is essentially a
mapping between the components of two graphs.

Definition 2.2 (graph morphism). Given two graphs G, H, a graph morphism
f = (fn, fE) consists of two partial functions fy : N¢ — Ny and fg : Eq —
Ey, such that fr(e) = ¢ implies fn(src(e)) = src(e), lab(e) = lab(e’), and
In(tgt(e)) =tgt(e’'). A graph morphism f is said to be total if both functions fn
and fg are total.

Thus, the nodes and edges of G are mapped onto the nodes and edges of H. For
a graph morphism m : G — H, we define its domain dom(m) and its codomain
cod(m), such that:

dom(m) ={zxe€ (NgUEg)|32x' € (NgUEg): m(x)=2a'}
cod(im) ={x € (NgUEpg)|3' € (NgUEg):m(z') =z}

2.2.2 Graph Production Rules

A graph production rule specifies a transformation to a graph, as well as when
this transformation may be applied, i.e. when the rule is applicable.

Definition 2.3 (graph production rule). A graph production rule r = (L, R,p,N)
consists of a left-hand-side graph L, a right-hand side graph R, a graph morphism
p : L — R mapping elements from the left-hand-side to elements of the right-
hand-side, and a set of negative application conditions (NAC) N. The rule is
applicable to a graph G if there is a total graph morphism f : L — G that
satisfies all negative application conditions in N .

The total graph morphism required for the applicability of the rule is also called the
graph matching. To simplify the definitions in this section, we assume that the rule
morphism is a partial identify function; this implies that we cannot merge nodes
using the transformation definitions given below. However, merge operations are
not used in the graph transformation rules used in this thesis. We now explain
negative application conditions and define NAC satisfaction.

2.2. Graph Transformations 17

Application Conditions

Negative application conditions, first introduced in [HHT96] specify elements that
may not be in the graph for the rule to match. For a rule (L, N,p, N'), N consists
of a set of negative application conditions, which are total graph morphisms n :
L — N. N is a graph that consists of the left-hand-side graph extended with
elements that are prohibited by the NAC. In the rules in this thesis, all NACs of
a rule must be satisfied (o.e., none of the conditions can be in the graph) for the
rule to be applicable.

Definition 2.4 (NAC satisfaction). Let r be a graph production rule (L, R,p,N).
For a NACn : L - N € N, a total graph morphism m : L — G is said to
satisfy n if there does not exist a total graph morphism my : N — G such that
mpyon =m. The graph poduction rule r is said to be applicable to graph G if there
exists a matching m : L — G that satisfies all negative application conditions in

N.

Rule Application

When we apply a rule to G, the elements that are in the LHS but not in the RHS
are deleted from G, and elements that are in the RHS but not in the LHS are
added. Given a rule r = (L, R, p, N), we identify the sets of nodes and edges to
be deleted and those to be created as follows:

Nper = {n|ninNp,n¢dom(my)}
Eprr = {ele€ Ep,ed dom(mp)}
Nyxgw = {n|ninNg,n & cod(mg)}
Engw = {e|e€ Eg,e ¢ cod(mg)}

Example 2.5. Figure shows a rule consisting of an left-hand-side graph, a
right-hand-side graph, a morphism between the nodes, and an empty set of NACs.
The edge morphism for the next edge between the two Station nodes has been omit-
ted. The labels on the nodes are in fact self-edges. The at edge connecting the Train
and the Station in the left-hand-side graph is not in the domain of the morphism.
When we apply the rule in Figure the at edge between the Train and the top
Station is deleted, and a new at edge is created between the Train and the bottom
(next) Station.

We will show examples of rules with NACs later in this section, when we have
introduced a handy visual notation. So far, applying a rule seems quite straight-
forward. However, things are complicated by two effects:

18 Chapter 2. Controlled Graph Transformation

next a next

Station Station

Figure 2.1: An example graph production rule with a left-hand-side, right-hand-
side, and a graph morphism.

e The matching may be non-injective; there may be two nodes ny € Npgp,
and ny € L\ Npgr, both mapped onto the same node in the graph;

e The matching may be non-surjective on the incident edges of a node sched-
uled to be deleted, i.e. a source or target node is scheduled to be deleted of
an edge that is not scheduled to be deleted.

To solve these complications, we specify that deletion always wins. This means
that the node in the first complication and the dangling edge in the second com-
plication are both deleted.

We now define how to apply a graph production rule r = (L, R, m) in G with a
graph matching f = (fn, fr) to a resulting graph H.

1. Extend the matching f to a total function f’ from Ny U Ng by adding fresh
images — nodes that are not in Ng — for all the elements of Nygw;

2. Construct a graph J = (f'(Ng), f/(ER));

3. Construct H = (NH;EH) with NH = NJ \ f(Nr,DEL> and EH = EJ\
f(Er,DEL) N K.STC_l(NH) N K.tgt_l(NH).

In the first step, we make sure that fresh nodes and edges are created and mapped
by those elements that are in R but not in L. The second step results in a graph
K in which all new elements are already included. The final step deletes those
elements that are in L but not in R, and makes sure no dangling edges remain.
This mechanism also “resolves” the issues described above.

In fact, the described solution is the one used in the so-called single pushout
approach (SPO). This is the approach already chosen by GROOVE [Ren04] — a
toolkit for graph transformation — the implementation environment of the control

2.2. Graph Transformations 19

expressions that are introduced in this chapter. GROOVE is unique for its ability
to simulate all possible rule applications, and representing these as a labelled tran-
sition system. There are other approaches — such as the double pushout approach
— that solve the problems described above in a different manner. For more infor-
mation and a detailed comparison see [LCCT96, [EHK™97|. The choice of using
SPO does not make a difference for the development of the control expressions.

2.2.3 The GROOVE Notation

The rules in this thesis have a special visual notation, that comes from the
GROOVE [Ren04] tool suite. In this notation, the elements of a rule (i.e. LHS,
RHS) are combined into a single graph representation using different line styles.
The elements are represented as follows:

e Npgy and Epgy, are depicted by thin, dashed (blue) lines;
e Nygw and Enpgw are depicted by the thick (green) lines;

e Elements of NACs that are not in the left-hand-side (i.e. only the part that
is “prohibited”) are depicted by thick striped (red) lines;

e All other elements are depicted with thin, (black) lines and represent the
intersection between the left-hand-side and the right-hand-side.

In other words, this means that the LHS consists of the normal and dashed thin
lines, and the RHS consists of the normal thin lines and the thick lines. To ease
the comprehensibility of the visual notation, we can summarise the different styles
as follows:

e normal elements represent reader elements, which are required to be matched
for the rule to be applicable;

e dashed elements represent eraser elements; these elements are required to
be matched for the rule to be applicable, and are erased when the rule is
applied;

e thick elements represent creator elements; they are not required for the rule
to be matched, but are added when the rule is applied.

Example 2.6. Figure [2.9 shows the same rule as is shown in Figure [2.1] but
instead the GROOVE notation is used. It shows the edge that is deleted using a
dashed line, and a thick line for the new at edge that is created. The normal lines
represent the reader part, that is merely required to be present.

20 Chapter 2. Controlled Graph Transformation

at next

Figure 2.2: The mowve rule of Fig. using GROOVE notation.

- Hunnng
I
at, nest

Figure 2.3: A move rule extended with a NAC.

| Train '—at—)| Station | at::
|

et niest
(a) Graph with a (b) Graph with no Match

Match

Figure 2.4: Example graphs for the rule in Fig. |2.3

Example 2.7. Figure shows an extension of the move rule with a negative
application condition. First, the rule only matches when there is a total morphism
of the LHS to the graph (i.e. there is a train at a station and — from this station —
another station can be reached). Then, there may not exist an extended morphism
for the NAC. In the shown rule, this means that there may not be a person at
the station the train is currently at. Only then the train may be “moved” to the
next station. In Figure a rule is shown where the rule does have a match.
The rule, however, does not have a match in the graph shown in Figure [2.]Y; the
matching of a train at a station (and a next station) can be extended for a person
at the station. The rule does not care how many persons are at the station.

2.2. Graph Transformations 21

2.2.4 Attributed Graphs

In GROOVE it also possible to specify and manipulate data values, such as inte-
gers, booleans, and strings. Data can be specified in graphs and rules in the form
of attributes, which are essentially edges to special data nodes which represent the
actual data values.

distance at

from
ehber

nest ;M»distance

boolfalze o

Figure 2.5: Example graph with attributes.

Example 2.8. Figure[2.5 shows a graph with attributes. In GROOVE, attributes
are displayed on the node, thereby hiding the attribute type. A Path node represents
the distance between two stations with an attribute distance with integer value
10. The train also has a distance attribute with integer 20, representing the total
distance travelled. The boolean attribute enter represents whether or not passengers
can enter or leave the train.

For attribute nodes, the node identity is related to the data value. This means that
it makes no difference if two integer attributes with the same value are specified
using the same or distinct nodes. Data values can never be created or deleted;
they are always (virtually) present and are merely referred to in the graphs.

In addition to specifying data values, it is also possible to manipulate them (e.g.
performing calculations in the integer domain). This is done by specifying so-
called product nodes in a rule. A product node essentially represent a set of data
values and an operation. For example, 1 + 2 = 3 represents input values 1 and 2,
output value 3 and the add operation. A product node is connected to its input
values using 7,,m-labelled argument edges. Given the input values, an outgoing
operator-edge (an edge labelled with the name of an operation) points to a node
with the output value of the operation. For the above operation, this means
that nodes with values 1 and 2 are connected to a product node as (numbered)
arguments; from the product node, an outgoing add-edge points to a node with
value 3. The data types of the targets of argument and operator edges must be
consistent with the signature of the operation on the product node.

In specifying these operations, a data value can either be specified with a concrete
value or an unknown value consistent with the required type of the operation it is
used in. We explain this by means of an example.

22 Chapter 2. Controlled Graph Transformation

- distance - Trainl =~~~ at---
“fram
at, e
o to

.
distance

distance

add

ml

Figure 2.6: Exampe rule with an attribute operation.

Example 2.9. Figure[2.0 represents the moving of a train from one station to the
next as we have seen before. On top of that, a path with a distance has been specified
for the two stations. A train is also equipped with a distance attribute, representing
the total distance travelled. The diamond shaped node denotes a product node. It
has two argument edges, one to the current distance travelled by the train, and one
to the distance between the two stations. The “add”-labelled operation edge (i.e., it
specifies the integer addition operation) points to the result of the operation. When
matching the rule, the unvalued operation arguments are matched with concrete
integer values in the graph (graphs only have concrete values). When applying
the rule for this match, the result of the operation can be calculated, which is
represented by the target node of the operation edge. The distance attribute of the
train is updated to the calculated value by deleting the old edge and creating a new
edge to this value.

More information — including formal definitions of attributed graphs, rule, and
graph transformation in GROOVE — can be found in [Kas0g].

2.2.5 Nested Rules

In some of these graph production rules in this thesis, we use another extension to
the graph transformation formalism, namely nested rules. Nested rules are used
to make changes to sets of sub-graphs at the same time, rather then just at an
existentially matched left-hand-side. We just explain them informally here. More
information — including the formal definitions of matching and applying nested
rules — can be found in [Ren09].

In essence, instead of only being able to select a particular sub-graph by expressing
”there exists a node there that is connected to a node such”, with nested rules we
can for example express rules that express: ”if there exists a node A, then for a
nodes B connected to this node A, if there exists a node C connected this node B,
then delete node B”.

2.2. Graph Transformations 23

Specification of a nested rule in GROOVE is done through nesting levels, that
use either universal or existential quantification. In fact, the graph production
rules defined so far can be seen as having a single existential matching level. The
definition of these levels is done be adding special nodes, labelled with an 3 or
V symbol, and connected using in-labelled edges pointing “upwards”. Moreover,
existential and universal rules are alternating; the first (implicit) level is existential,
the second universal, and so on. The matching of a rule is specified by assigning
nodes to a nesting level using at-labelled edges.

Matching is done starting from the top level. For an existential level, a matching is
required for the nodes and edges in this level. For a universal level, the morphism
is extended to include all elements that are matched by the universal level. Edges
between nodes in one level are implicitly part of this level; edges between levels
belong to the lowest level.

at

Figure 2.7: An example of a nested rule.

Example 2.10. Figure shows an example of a nested rule. The dotted nodes
and edges represent the hierarchical nesting levels: the top 3-node represents the
first, existential level, and the bottom Y-node represents the second, universal level.
The hierarchy is represented by the dotted in-edge. The Train and Station nodes
belong to the existential level, the Person belongs to the nested universal level. This
is specified by the dotted at-edges. First, a Train at a Station is matched. Then,
the Person node matches all Person nodes in the host graph that are connected to
the (already matched) Station by a at-labelled edge. When applied, the rule will
remove all at edges between the matching Person nodes and the matched Station
node, and creates in edges between these Person nodes and the matched Train node.
Intuitively, the rule matches a train at a station, and lets all people at this station
board the train.

2.2.6 Exploration Strategies

Given a start graph and a set of rules, this rule system can be represented as
a labelled transition system (LTS), where the states are graphs, and the transi-
tions are in fact rule applications. The GROOVE simulator supports different

24 Chapter 2. Controlled Graph Transformation

exploration strategies. These strategies specify in what order the state space is
explored.

Full Exploration

A full exploration results in a state space where all states are completely explored;
outgoing transitions exist for all matches of all rules in all graphs. Generating this
full state space can be done either breadth-first or depth-first, but this makes no
difference for the result, which is defined by the input (i.e. the start graph and
the rules).

Linear Exploration

In a linear exploration, a single match is selected from the possible matches of
the rules in a graph. The application results in a new graph where again a single
match is selected. This is repeated until a known graph is reached (i.e. a cycle is
formed) or when a graph is reached without any possible matches — a so-called
final state. This strategy is typically suitable for finding a random final state in
finite systems.

2.3 Rule Systems and Automata

Since this work is placed in the general context of rule systems, we first define our
conception of such systems. Throughout this chapter we denote the universe of
all rules as Rule.

Definition 2.11 (rule system). A rule system is a set of rules R C Rule, which
act on a universe of data structures, Data, in a manner captured by a partial
derivation function § : Data x R X Id — Data, where Id is a set of application
identifiers.

The fact that §(d,n,4) = d’, which we will henceforth denote d % d’, expresses
that rule n can be applied to structure d, resulting in a new structure d’. The
identifier ¢ provides information on how n was applied precisely; this has the effect
of making the result d’ unambiguous.

Without going into details, we note that this definition encompasses a wide spec-
trum of systems, including Turing machines, Petri nets, and various kinds of
rewrite systems.

Example 2.12. In a graph production rule system, R elements are graph produc-
tion rules, Data elements are graphs, and Id is the set of matchings.

2.3. Rule Systems and Automata 25

The meaning of a rule-based system is usually taken to be the mnormal forms
reachable from a given input structure d; that is, those structures d’ € Data such
that there exists a chain of derivations d il T2t . Initny ' and there are
no further derivations possible from d’. In other words, one is interested in the
transformational or input-output behaviour of the rule system. In this work, on the
other hand, we consider the temporal or reactive behaviour of rule systems, which
can only be captured by taking intermediate steps into account. To formalise the
reactive behaviour, we use automata. For the sake of simplicity, in this chapter
we identify rules with their names; hence, we will use rules as (part of) transition
labels. Throughout the chapter, we will use R to stand for the rule system under
consideration, with associated sets Data of data structures and Id of application
identifiers.

2.3.1 Automata

We distinguish system automata and control automata, with the same structure.
System automata represent the behaviour of a system, whereas control automata
specify the controlling behaviour that can be added to a system. First we introduce
the general concept of automaton.

Definition 2.13 (automaton). An automaton A is a tuple (Q, %, —, qo,S) where

Q is a set of states;

Y. is a finite alphabet, which may include the special symbol \;

— C QXX xQ is a set of transitions;

qo € Q is the start state;

e S CQ is a set of success states.

A is called deterministic if for allq € Q and L € X, L # X and ¢ 5 ¢, and ¢ 5 o
implies g1 = qo.

Intuitively, a success state is a state in which it is correct to halt execution. The
special symbol A\ stands for an invisible step. We use the following notations:

qfl...en q/ e qz_1>_”e_n>q/

(Sq¢ = n:qg2L ¢
q ai-an q/ AN qé“—1>:€>a—">q/)

Moreover, we use ¢ % to denote 3¢’ : ¢ & ¢', etc. Finally, we define the language
of an automaton as the set of all traces T (A), with a distinguished subset of

26 Chapter 2. Controlled Graph Transformation

successful traces TV(A). Both are needed to examine the trace-equivalence of
automata; not every trace ends in a success state. For all A € Aut:

T(A) ={weE\N" =}

L(A) = (T<A)7T\/(A))’ where T\/(A) ={we X\ N |qp == ¢ €5}

It follows from standard theory for these acceptance conditions, that every lan-
guage (to be precise, every pair (7, 7V) with 7 C (2\ A\)* non-empty and prefix-
closed and 7V C 7)) is (uniquely up to bisimilarity) represented by a deterministic
(though generally infinite) automaton.

2.3.2 System Automata

A system automaton is essentially a state-transition system describing the step-
by-step derivations of a rule system.

Definition 2.14 (system automaton). A system automaton is an automaton with
Y = (Rule x Id) U {\}, such that every q¢ € Q has an associated data structure
dq € Data, satisfying the following consistency properties:

¢ qd & dy=dy
¢ g e dy M dy .

For arbitrary d € Data, the free automaton Ay is a system automaton with data
structures as states and derivations as transitions, which is the smallest such that:

e () C Data,

® qo = d7 4o S Q;
o foralld € Q and 6(d',n,i) =d", d" € Q and d' ™% d"
e S=Q.

The set of system automata is denoted SAut. The (r,7)-labelled transitions are
essentially rule applications, whereas in a A-transition no data transformation oc-
curs. Given that states are data structures combined with some extra information,
a A-transition represents a change in this extra information. The free automaton is
the result of uncontrolled rule application at every state. Since no constraints are
specified regarding the correctness of halting executions, every state is a successful
state.

Example 2.15. Figure shows a system automaton based on the start graph
shown in Figure and two rules:

2.3. Rule Systems and Automata 27

0 m el
s1

Figure 2.8: Example System Automaton

open at,

Figure 2.9: Start graph of the example rule system.

Train at—)| Station
enter = true —entet
4 \
at, ‘?t
i

ehber

(a) enter (b) close

Figure 2.10: Rules of the example rule system.

e : This rule (Fig. represents a passenger entering a train.
¢ : This rule (Fig. represents the closing of the train door.

This simple process is shown for a start state where two passengers want to enter
the train. The e-rule can be applied twice. The door can be closed once, regardless
of the passengers being inside or outside the train. All states are successful in the

free automaton.

Determinism.

We follow standard automata theory in equating all automata with their lan-
guages; or in other words, every automaton is considered to be essentially the
same as its determinisation (according to the standard powerset construction).
For system automata, this is justified because their labels are enriched so that

28 Chapter 2. Controlled Graph Transformation

3

O O O O @,
(a) (b) (c)

Figure 2.11: Different types of non-determinism

they do not only contain rule names but also application identifiers. Only the rule
names are typically observable; for instance, verification methods such as model
checking only take note of the rule name part of the labels.

If we would project all Rule x |d-labels of a system automaton onto their first
components, the resulting automaton would in general be non-deterministic; but
this type of non-determinism can not be resolved without changing the meaning of
the automaton; typically some form of bisimilarity is imposed instead. This implies
that this projection does not preserve the intended semantics of the automata. For
instance, in Fig. automata (b) and (c) are language equivalent, whereas (a)
is different; however, after projection onto the rule names, (a) and (b) appear
essentially the same (viz., isomorphic) whereas (¢) appears to be different.

In other words, after projection onto the rule names, equally named transitions
may either be from rule applications with equal or with different identifiers. In a
free automaton, non-determinism after projection is only caused by having multi-
ple applications of the same rule in the same state, and never by having the same
rule application twice. As we will see next, imposing control on a system automa-
ton may cause spurious non-determinism (equal transitions represented more than
once).

To avoid this type of confusion, we prefer to work only with deterministic system
automata. Obviously, this can be achieved by determinising automata whenever
necessary. However, this might not be the best technique, as determinisation can
be exponential in the size of the automaton, and system automata are likely to be
very large. Part of the contribution of this work is therefore a technique to avoid
generating non-deterministic system automata altogether.

2.3. Rule Systems and Automata 29

Figure 2.12: Example Control Automaton

2.3.3 Control Automata

Control automata are automata that can express, on the one hand, the application
of a rule and on the other the observation that a given set of rules cannot be
applied. The latter is called a failure. The set of all possible failures is given by
Fail = 2Rule,

Definition 2.16 (control automaton). A control automaton is an automaton
where ¥ = RuleU Fail, such that:10

o For all ¢ € Q, ¢ £ with F € Fail only if Ya € F : q¢ Fifny a0 gith
G¢F1U"‘UFH, F; € Fail.

o Forallge S, a € Rule and F € Fail, there is no transition g % or g L.

A failure transition with failure F' may exist from a state ¢ only if from ¢ each
of the rules a in the failure can also be found on a normal transition via a path
consisting of only failure transitions Fj ... Fj,, and none of these failure transitions
contains this a. This guarantees that observing the non-applicability has meaning,
only if applying the rule does to. From a success state, no outgoing transitions
are allowed. Having this constraint simplifies the definition of control automaton
operations — such as sequential composition — by merging states.

The class of control automata is denoted CAut.

The empty failure means that all rules in the empty set are inapplicable, which is
vacuously true; hence, an empty failure transition is effectively a A-transition.

Example 2.17. Figure shows a control automaton in which rule e is sched-
uled as long as it is possible, after which ¢ is scheduled. In the setting of Example
the door is closed only when mo more passengers want to enter the train.
Here, ¢y 1y ¢y denotes a failure transition with label {e}. [| represents the empty
failure, which (as noted above) has the same behaviour as a A-transition.

30 Chapter 2. Controlled Graph Transformation

Figure 2.13: Example Product System Automaton

2.3.4 Combining System Behaviour and Control

The idea of a failure as the observation of a set of rules being inapplicable is given
a meaning by defining the product of control and system automaton. This results
in another system automaton, where states are tuples of a system state and a
control state.

Definition 2.18 (product). The product of a system automaton A and a control
automaton C is defined as AxC = (Qa X Qc, XA, —,(qo,4,q0.c), Sa X Se), where
the transition relation is defined by the following rules:

Ga 2 dy ac Bede de Hedh VneFkelId:qq A2,
(qa.qc) 2% (¢4, qb) (qaqc) 2 (qa,qk)

qa 2 4 da
(g4.qc) 2 (d4.9c)

The control automaton constrains the system automaton on the name-component
of its traces. In particular, in a combination of system state and a certain control
state, a failure transition from that control state can be taken when for none of
the names in the failure set an outgoing rule application exists in the system state.
Because a failure transition in the control automaton results in a A-transition in
the product automaton, the alphabet of the product is the same as that of the
input system automaton.

For example, Figure shows the system automaton that is the product of the
system and control automaton in Figures 2.8 and 2.12]

2.4 Control Language

For the convenient specification of control automata, we propose to use a control
language along the lines of what has previously been proposed in, e.g., [HP0I1].

2.4. Control Language 31

We will use the following grammar:

P := rule | true | P\|P, | P.;P, | Px | alapP | try P, | try P, else P, |
if(Pl)PQ | if(Pl)PQeIsePg | WhlIE(Pl)dOPQ | untiI(Pl)dOPQ

These constructs have the following intuitive meaning:

o rule schedules the execution of a single rule (named rule);

e true behaves like a rule that is always successful and does not change the
underlying structure;

e Pi|P; is the non-deterministic choice of Py and Pa;

e Py; P, is the sequential composition of Py and Ps;

e Px (the Kleene closure) schedules P an arbitrary number of times;
e alap P (as long as possible) schedules P until it fails;

e try P; schedules Py, and is skipped if P; fails;

e try P; else P, schedules P; first, and schedules P; in case P fails;
o if (P;) P, schedules P; first and schedules P; in case P; succeeds;

o if (P;) P, else P; schedules P; first and schedules P; in case P; succeeds or
Pj in case P fails;

e while (P;) do P, schedules P; and then P, until P fails;

e until (P) do P, schedules P;, but P5 and again P; in case P; fails;

Traditionally (e.g., in [HPOI]), the effect of such control programs is defined in
terms of the resulting input-output behaviour for the rule system at hand. For-
mally, this is captured by a function [—[;, : Lang — Data x Data. For instance,
for some of the operators, the defining clauses are as follows, where r is a rule and
1 is a application identifier:

Ire = {(d,d)|3Ir;i:d2L d}
[Pr; Polio = {(d,d) | (d,d") € [Pi]io, (d",d") € [Pa]io}
[[P*]]io = {(d d) | de Data} U {(dOv) ‘ (dO&dl) 'a(dn 17) [[P]]IO}
[alap Plic = {(d,d) € [Px]io | $d" : (d',d") € [Plio}

Using control automata, we express the reactive rather than the input-output
behaviour of Lang; or in other words, it is a small-step semantics rather than a

32 Chapter 2. Controlled Graph Transformation

big-step semantics. An advantage, furthermore, is that we capture the meaning
of control expressions without reference to any particular rule system. However,
our approach inevitably implies that the meaning of, for instance, alap changes
with respect to the above definition: rather than considering a sub-expression
“possible” if it can run to a successful completion, we consider it “possible” if it
can do a single step. For example, in alap{a;b; }, the alap repeats its body while
the first rule is possible — in this case when a is possible.

alap{ enter } ; close

Listing 2.1: Expression corresponding to Fig. [2.12

Given the language, we can formulate conditional scheduling of a rule, apply a rule
as long as possible or any number of times. For example, the control automaton
shown in Figure [2.12] corresponds to the control specification in Listing The
enter rule is scheduled repeatedly until it can no longer be applied and is then
followed by the close rule.

To specify the example, we do not have to know the details of the rules. In
principle, the control program can be applied to any rule system with rules named
enter and close.

The “alap” and “try” constructs are the elementary constructs in the language,
whereas other constructs are merely syntactic sugar of these. These are introduced
to make the semantics of the language more intuitive:

o if (P,) P, is the same as try {P;; P2 };
o if (P,) P, else P; is the same as try {P;; P>} else Ps;

e while (P;) do P; is the same as alap {P;; P»}.

Next, we define the language semantics. Constructs that are syntactic sugar are
omitted.

2.4.1 Semantics

The semantics of Lang is defined through a set of operators over CAut inductively.
For this purpose, we first need to define what it means for an automaton to fail;
this is an important concept in the definition of alap and try-else. The failure of
an automaton is based on the non-applicability of its initial actions, being those
rules that are scheduled as a first action. This set of initial actions is defined as
follows:

2.4. Control Language 33

Definition 2.19 (initial control actions). The initial actions of a given control
automaton C are defined by

Init(C) = {a | g Lr=Fny 8,y U (S | 3¢ : qo Loty ¢/ € S}

Here a represent a rule. The result is a set of rules that can be performed first,
optionally after observing a number of failures. A ¢ in the result indicates that
in the given automaton there is a path consisting of only failure transitions from
the start state to a success state. Intuitively, this means that a success state can
be reached without performing any actions (apart from observing what cannot be
done); A § in the set of initial control actions therefore represents a guaranteed
success. Later we will see that this implies that the failure of the automaton is
not defined.

Figure shows the construction operations. In these definitions, we use control
automata C; = (Q;, X, —4,qo,,S:) for i = 1,2, and we use distinct fresh states
an,qm ¢ Q;. The ? represents a “try (else)” operation, the | represents the
“alap” operations, and ! — represents an “until-do“. The following points are
noteworthy:

e In the sequential composition Cy;Cs, every transition in C; to a success state
is redirected to the start state of Cs.

e The true keyword is simply represented by a single success state.

e In the “non-determistic choice” C; | Ca, outgoing transitions of the original
start states are replaced to use a fresh start state gy .

e In the “alap closure” Cil, transitions to success states are redirected to the
start state. Optionally, a failure transition of the init of the automaton is
created to a fresh state gy.

e In the “try-else” operation C; 7Cs, the start state of C; is optionally connected
to the start state of Co by a failure transition.

e In the “until-do” operation C1! — Cs, an optional failure transition is created
of the init of Cy, sequentially composed with Cy and looped back to the start
state.

We now state the following property:

Proposition 2.20. CAut is closed under the constructions defined above.

The proof is straightforward. We show that, given C; for i = 1..n in CAut,
conditions 1 and 2 in definition 2.16] hold for all constructed automata.

34 Chapter 2. Controlled Graph Transformation

Cule = ({ansan} 2 {(gn, rule, qnr) '}y gar, {gn})
Ctrue ({QN}727®7(]N; {QN})
Ci|C = (@,%,—,qn,S1USs), where
Q=01 \ {01} UQ2\{q0,2} U{gn}
= ==1\{(q0,1,7,9) | 901 %1 ¢} U{(an,7,¢) | 01 %, ¢'}
U—2\{(g0.2:7,9) | 902 &5 ¢} U{(an,7,9) | 02 S5 q}
C1;C = (Q1\S1UQ2,%,—,q0,1,52), where
=== \{(¢,2,¢) | ¢ %, ¢ € 51}
U{(¢, %, q02) | ¢ %, ¢ €S1}U—2
Cix = (Q1YU{gn},2,—,q01,{an}), where
— =—1 U{(q, \,qn) [¢ € S1}
Cil = (@\S1U{an}, 2, —,q0,1,{qn}), where

— =1 \{(Q7xaq/) | q £>1 q/ € Sl} U {(Q7xaq0,1) | q £>1 q/ S Sl}
U {(qo,1, Init(C1),qn) | § & Init(C1)}

C1?7 = (@ U{gn},Z,—,q9.1,51 U{an}), where
— = —=1U{(qo,1, Init(C1),qn) | 6 & Init(C1)}
C1?7C = (Q1UQ2,%,—,q0,1,5 USs), where
— = =1 U—=2U{(qo,1, nit(C1),q0,2) | 6 & Init(C1)}
Cll =C2 = (Q1UQ2,%,—,q0,1,51), where

— = —=1U{(qo,1, Init(C1),q0,2) | 6 & Init(C1)}
U —2 U {(%%%,2) | q i)g q/ S 52}

Figure 2.14: Construction operators over CAut.

Proof.

Condition 1. All states of C; fulfil the condition. Any removed transitions are
replaced by new transitions using the same source state. Therefore, the property
cannot be invalidated for any already existing failure transitions. Addition of
failure transitions is always done by using the start state of an automaton (C;)
as its source state; the failure on the transition becomes Init(C;). Therefore, by
definition (Def. , the source state of newly created failure transitions satisfy

property 1 of Def.

Condition 2. In all constructions, S is formed by using .S; (already fulfilling the
conditions) and/or a fresh state ¢y; no outgoing transitions are created from any

2.4. Control Language 35

of these states. O

This gives rise to the following semantic function [—]au: : Lang — CAut:

[rule]aut = Crute
[truefaut = Ctrue
[P1|P2]awe = [Pilaut | [Pe]aut
[P1; Pollaut = [Pi]aut; [Pe]aut
[Pr]aue = [Pr]auex
[alap Pi]awt = [Pri]aued
[try Pilaut = [Pr]awt?
|Itry Py else PQ]]aut = [[P]]aut ? HPQ]]aut
[P

[[untll (Pl) do PQ]]aut =]]aut' — [[PQ]]aut

As we have pointed out above, this differs from the semantics studied in [HP0I]
(and elsewhere) in the treatment of failure, which for us is the failure of a small
step but for them the failure of a big step. For instance the control program P =
alap (a; b); c imposed on a rule system where d 2% d’ and d <4, d” but Pk : d’' 25,
gives rise to (d,d"”) € [PJio (a;b fails and is completely sklpped by backtracking),
whereas [P]aut X Ag only contains the transition (d,qo) 2% (d’,¢q1) ¢ S, without
further outgoing transitions.

We illustrate the process of control automata construction for a control program
for the program alap {try a else b}; c. The states are numbered for clarity reasons.

First we start with the base automata [a],ut and [b]aut.

a b
For the “try-else” construction, a single failure transition is added between states

0 and 2. The failure consists of Init([a]as) = {a}. State 0 becomes the start state
of the constructed automaton.

36 Chapter 2. Controlled Graph Transformation

(-

In the “alap” construction, transitions to final states are redirected to the initial
state, and from this initial state, a failure transition is created to a fresh state 6.
The failure consists of Init([try a else b]ay) = {a,b}

la,b]

a

Next, the automaton [c]ay is created.

la,b]

Finally, for the sequential composition, the incoming transitions of state 6 are
substituted with transitions to state 4. Here it becomes clear why having no
outgoing transitions from success states is convenient.

[a,b]

2.5. Guarded Control Automata 37

2.5 Guarded Control Automata

The product operation defined in Definition [2.18|can result in a system automaton
that is non-deterministic in the sense of Def. even when system and control
automaton are both deterministic.

Example 2.21. Consider the following automata:

-0 ~0-0—0 ~0">0“>0

(a,0) [b] A

O O0—0O O—0

(c,0)

O

The system automaton on the left is clearly deterministic in the sense of Def.[2.13
In its product with the control automaton in the middle, shown on the right, there
is a A-transitions. Both before and after this transitions the rule application (a,0)
occurs. However, after the top-most (a,0) another transition (c,0) is possible.
Thereby, the mechanism for combining a system automaton with a control au-
tomaton has created spurious non-determinism.

The desired result of synchronising a control automaton and a deterministic system
automaton is a deterministic controlled system automaton. Failure transitions give
rise to A-transitions in the product automaton. After such failures, the same rule
applications may be scheduled. This can cause different traces to be generated in
the product after A-transitions.

The introduction of such non-determinism is undesirable. For that purpose, we
introduce guarded control automata. Here, every transition consists of a rule name
with a positive and negative guard, both of which are sets of rules, and n is the
rule that is applied. For n to be enabled, all rules in the negative guard must fail
to be applicable, and all rules in the positive guard must be applicable (i.e. each
of the rule in the positive guard must have at least one match). We also introduce
a determinisation operation for normal control automata that produces a guarded
control automaton.

We use the notation ¢ [F|A]n, q' for transitions with guards, where F is the
negative and A is the positive guard. When A = (), we use the notation ¢ 1% ¢/;

g ¢' denotes that FF = A = 0.

38 Chapter 2. Controlled Graph Transformation

Definition 2.22 (guarded control automaton). A guarded control automaton is a
deterministic automaton with ¥ = Failx 2R"¢ x Rule and S C Q x Fail. Transitions
should satisfy the following constraints for all ¢ € Q:

1. ¢ A smplies FNA =0

2. q [FilAsn, andqm implies Fy U A = Fo U Ay

3. q A implies g YA,

The transitions in a guarded control automaton represent the scheduling of a rule
n and the negative guard, consisting of the rules that may not be applicable for the
rule to be scheduled. However, there may be multiple transitions n with different
negative guards. If a negative guard F}) is satisfied in a system state, then a
negative guard Fy C F} is automatically also satisfied. To have only deterministic
synchronisation, we must therefore also specify which rules have to be applicable.

It is possible that there are more transitions with the same rule n but with different
negative and possible guards F' and A. However, in a specific system state, only
one distinct combination of F' and A can be satisfied: a rule can only be enabled
or disabled, and both guarded transitions must have the same rules divided over
F and A.

Since only one combination of A and F' can be satisfied in a system state, there is
at most one n transition in a guarded control state that can be synchronised with
an application of n from a system state. Success states are now also conditional
(or guarded). The class of guarded control automata is denoted GAut.

We define the failure dependency function fd from actions and sets of states to
sets of actions. It gives for each action n and states gs the union of all possible
failures that lead to a state where n is allowed.

Definition 2.23 (failure dependency). The failure dependency in a set of states
qs for a rule n is defined by:

fd(gs,n) = | J{Fi | 3q € gs : g Lrofmy ¢/ 13

Determinisation of a control automaton is given by a function det:

Definition 2.24 (control automaton determinisation). Given a control automaton
C, det(C) is an automaton with Q = 29¢\ 0, qo = {qoc}, where — is defined by:

F C fd(g,n) A= fd(g,n)\F
gs A Ll | ge € qs 1 qe Bt s gL P UL UF, CF}

2.5. Guarded Control Automata 39

The set of success states is defined by:

S:{(Q&UFO | 3qc € g5 : qo 2L g € Se}

?

Intuitively, all failure-observations are collected that lead to a state where a certain
action is possible; these observations performed in the system automaton influence
what is reachable in the control automaton. All possible different results of the
set of observations are represented by a transition, with each observation in either
F or A.

The states in the guarded control automaton are sets of states of the original con-
trol automaton. The target state of a transition ¢ [AlF]n, ¢ in the guarded control
automaton is defined as the set of all states in the original control automaton that
can be reached with the failures in F' followed by a rule name n. The positive
guard A of a transition contains the names of those rules that must be enabled,
which are those rules that are not in F but are in the failure dependency of n in
the source state. Given n, F' and A, the exact set of reachable states in C can
be determined, which becomes the target state of the guarded transition. In the
result, each transitions that applies rule n will have a different F' and A leading
to a different set of target states.

A success state is a set of tuples consisting of states and failures. Success is a
conditional property; we show in the product definition that a product state is a
success state if a failure is satisfied by the system component in the product state.
A state with the empty failure is an unconditional success state.

We state the following property:

Proposition 2.25. Given a control automaton C, the automaton det(C) is a
guarded control automaton.

Proof. The proof that the created automaton satisfies the requirements (1), (2),

and (3) of Def. follows directly from the construction of — in Def. Let

G = det(C). For all qg € Qg with qg LA™, and gg E2l421ny ¢ follows that:

1. FD = fd(qg,n), F; C FD,A; = FD \ F, which implies that A; N F; = 0.
2. FD:fd(QQ,Tl) and F1 UA1 :FQUAQZFD

3. There must be a transition gg JEALN qG- Let F' = fd(q,n), then q;. The
required transition’s target state contains all possible failure paths to a state
where n is allowed (the union of ¢/ in Def. 2.23). Since F = fd(q,n), A
is empty. The constructed automaton must also be deterministic. Given

40 Chapter 2. Controlled Graph Transformation

@ e
ak e
le]le le]e

i : i

Figure 2.15: Example Extended Control Automaton

transitions ¢g REGTEIIN q; and qg P2l Az)n, qg, if F1 = F, this implies that

A; = A,. The construction of the target state is deterministic given the
source state gs (i.e. set of states from C), n and F, since all reachable states
are collected. The identity of constructed state is based on the collected set
of states from C. Thus, this implies that ¢ = ¢g.

O

Example 2.26. Figure shows the guarded control automaton for the con-
trol automaton of Figure [2.13 From the start state, an e transition is possible
to {co,c1}, which can be repeated as long as e is possible. From both {cy} and
{co,c1} a c transition is possible to {ca} if e fails. The outgoing transition in {ca2}
represents the success condition. Since there is only the empty failure set, it is an
unconditional success.

For the definition of the product of system automata and guarded control au-
tomata, we introduce the function enabled, which returns a set of rules that are
enabled in a given system state or a state reachable after an arbitrary sequence of
As.

Definition 2.27 (enabled rules). Given a system automaton A, the function
enabled : Q4 — 2R%e is defined as:

enabled(qa) ={n € Rule | i € Id: qga %A}

The semantics of a guarded control automaton is given by the product with a
system automaton. This results in another system automaton, where states are
tuples of system states and guarded control states, defined as follows:

Definition 2.28 (guarded product). Given a system automaton A and a guarded
control automaton G, the product AX G is a system automaton, with Q@ C Q4 XQg,
g0 = (go,4,G0,6), and —, S are defined by:

g i) Ada 4G [F|A]n, g 4 FnNenabled(qga) =0 A C enabled(qa)

(q4,99) 2 (¢4, q5)

2.5. Guarded Control Automata 41

—>

Figure 2.16: Example Guarded Product Automaton

qa 2 4 dy qa € Sa (g6, F) € Sg FNenabled(qa) =0
(q4.99) 2 (d4,q9) (qa,q0) € S

A transition with rule n in G is paired with rule applications of n in the system
automaton 4 when none of the rules in the negative guard F' are applicable in g4,
and all rules in the positive guard A are applicable in g 4.

The success states are those states where g4 is a success state, and the failure it
is combined with in § is satisfied in g 4.

Example 2.29. Figure[2.1 shows the product of the guarded control automaton
of Figure and the system automaton of Figure [2.8

As said before, the purpose of guarded control automata is to be able to produce
deterministic controlled system automata. We state the following property:

Proposition 2.30. Given a guarded control automaton G and a deterministic
system automaton A, A x G is deterministic.

Proof. Given that A is deterministic, it contains no A-transitions. Let P =

A x G. Then, by construction (Def. [2.28) P contains no A-transitions either.
(n,i

For all (¢4,q9) € Qp with (¢4,45) % (¢4, d5) and (44,49) 5 (¢, 45) we
need to show that (¢'y,q5) = (¢4,4¢). Since A is deterministic, we know that

ga 0 ¢y and ga ™Y, ¢4 implies that ¢y = ¢4 Also, for gg Mg 4G
and gg [F1|F2]n G qg, Def. implies that q’g = qg (it is deterministic). For

qg Mg, there is at most one combination of F, A where F' N enabled(qq) = 0
and A C enabled(qa), since a rule can only be enabled or disabled. Def.

implies that (q:4,q’g) = (¢}, qg) O

2.5.1 Equivalence

We will now show that guarded control automata serve their intended purpose,
namely that the product of a system automaton with a control automaton is

42 Chapter 2. Controlled Graph Transformation

c X AXxC
det A L-equivalent
det(C) X A X det(C)

Figure 2.17: Schematic Representation of the Equivalence in Theorem m

essentially the same as its product with the determinised guarded control automa-
ton. ”Essentially the same” means that they have the same language in terms of
(Rule x Id)-traces. This is depicted in Figure and Theorem m

Theorem 2.31. For all system automata A and control automata C, L(AXC) =
L(A x det(C))
To prove this, we show inclusions in both directions, using two distinct notions of

simulation.

Definition 2.32 (forward simulation). Given two system automata Aj, As, a
relationship p C Q1 X Q2 is called a forward simulation if:

(g0, 90,) € p (2.1)
and for all (q1,q2) € p:
g 0, 0 b o 30y 0 g A (g 05) € p
@1 =>q €51 = g2 = ¢, €5,
Proposition 2.33. If there exists a forward simulation between A; and As, then
T(A1) € T(Az) and TV (A1) C TV(Ay).
Proof. The proof is by induction over the length of the traces.

Hypothesis (7) If there is a qp, == ¢; then there is also a gy, = ¢2, and
(q1,92) € p.

Basis. Let w be a trace in 7 (A;). If w is of length 0, it is also a trace of Ay. It
follows from that (q1,q2) € p.

2.5. Guarded Control Automata 43

Inductive Step Let w = w'(n,i) be a trace in 7(Ay). Then, for some ¢,

qo, SN q1 SUEIN qy. Slnce w' is shorter then w we can by induction assume

that there is a qo, SN ¢4 such that (¢1,q%) € p. From n it follows that

there exists a ¢} SUIDN ¢y . Thereby, w is a trace in T (Asz), and (¢f, ¢4) € p.

We must do the same for the successful traces. Since TV(A;) C T (Az), we can
take a shortcut here, by referring to the hypothesis above for all traces, which
we already have proved to be true. For all traces w € TV(A;), it follows that
w € T(.Al) Then there is a qo0,1 = q1, 90,2 = q2, and (Q1,q2) € p. Also,
because w is a successful trace, there exist a ¢1 = ¢ € S;. From Def. it
follows that there is a gy == ¢} € Sa, thus w € TV(Ay). O

Proposition 2.34. Let A be a system automaton and C a control automaton; then
the relation defined by p = {((qa,4c), (q4,99)) | gc € qs} is a forward simulation
between A x C and A x det(C).

Proof. We now give the proofs that (2.1]), (2.2]) and (2.3)) of Def. hold for the
proposed p. Let 43 = AxC,G = det(C), Az = Ax G.

(2.1) By construction (Def. E 2.18| and Def. [2.28)) go.1 = (0,4, 90,c) and go2 =
(g0,.4,{q0,c}); hence it follows that (o1, go,2)-

(2.2) Let (ga,qc)p(qa,qg) and let there be a transition (g4, gc) %1 (d'4,40)-

Def. m implies q¢ —t=fny n, gz, F Nenabled(qga) = 0, with F = Fy U

.U F,, and g4 =5 (9, ¢'y. We choose a failure set F' = fd(qg,n) \
enabled(q4) so that F’ can be synchronised with any visible action from g 4.

Since qc¢ € qg, Def. implies F C F/, qg AFln, q; with A = F'\ F,
and q; € qg. From Def. [2.28)it follows that (g4, qg) :>(~”—’)+2 (¢4, 45), and
(@4, q2)p(d'y, aG) by construction of p.

2.3) Let (g4,qc)p(qa,4g), and 3(qa,qc) =, (¢4,qc) € S1. Def. implies
qa € S, Jqc AT IN gz € S¢, F=F,U...UF,, and F Nenabled(s) = 0.
Def. implies (gg, F') € Sg. Finally, from Def. follows (g.,qg) € So.

O

The other direction is also covered by a simulation.

Definition 2.35 (reverse simulation). Given two system automata A; and As,
pC Qo x29, R# for all (¢, R) € p is called a reverse simulation if:

(90,2:{a0,1}) € p (2.4)

44 Chapter 2. Controlled Graph Transformation

and for all (qa,R) € p:

g2 :>(n’i) 5 ¢y = 3¢5, R') € pNr' € R".3r € Rr NGUN L (2.5

[\]
D
= =

©=q¢y€8 = I € R = ¢1 €51

Proposition 2.36. If there exists a reverse simulation between A; and As, then

T(A2) € T(Ay) and TV(Ag) € TV (A1).
Proof. The proof is by induction over the length of the traces.

Hypothesis (7). If there is go 2 = g2 then there is a (g2, R) € p, and for all
¢1 € R thereis a o1 = 1.

Basis. Let w be a trace in T (Az2). If w has length 0 it is in 7(A4;), and
(q0,2:{q0,1}) € p by 2.4

Inductive Step. Let w = w'(n,i) be a trace in T(Az). Then, for some ¢b,

q0, = q2 % ¢b. Since w' is shorter than w we can by induction assume

that there is R such that (g2, R) € p and for all ¢g; € R there is a qo, % q;-
From Def. follows that there exists an R’ such that (¢}, R’) € p and for

all ¢} € R thereisaq; € R with ¢; % Thereby, w is a trace in T (A1).

For the successful traces we again take a shortcut by using the proof for all traces.
Let w € TV(Ay), then also w € T(Ap). Then there is a (g2, R) € p and trace
w to ¢o and to all ¢ € R. Since w € TV(Ay), there is a ¢ = ¢} € So. From
it follows that there is a ¢; € R for which there is a ¢ =>€ S;. Thus,
w e T\/(Al) O

Proposition 2.37. Let A be a system automaton and C a control automaton, and
G = det(C), then the relation defined by p = {((¢.4.46) R) | Yac € g : (qa,qc) € R}
is a reverse simulation between A x C and A x det(C).

Proof. We now give the proofs that (2.4]), (2.5 and (2.6)) of Def. hold for the
proposed p. Let A1 = A xC, Ay = A x det(C),G = det(C).

(2.4) By construction (Def. and [2.28) go1 = (A,C) and ¢o2 = (A, {C});
hence it follows that (go,2,{qo.1}) € p-

(2.5) Let (ga,qg)pR and let there be a transition (g4, qg %2 (¢4, q5). From

Def. it follows there is a g4 ENEGIUN A 44 (any A-transitions are
caused by synchronisation with A-transitions in the system automaton) and

2.6. Implementation & Usage 45

qg AlFIn, qG, such that F' N enabled(s) = 0, and A C enabled(s). Def.

implies ¢5 = {q¢ | 3qc € g6 : qc AT L NN ge with F1U...UF,, C F}. Def.

implies Vqz.3g¢ € gg-(q4, qc) %1 (¢'4,q¢)- This corresponds to the

construction of R’ in

[2.6) Let (qa,qg)pR and (qa,qg) € S2. Def. 2.28) implies g4 € SA,HF (gg,F) €

Sg : Fn enabled() = 0. Def. [2.22 1mphes dgc € g6 : qc :>c g €
S,,FyU...UFy = F. Finally, Def. implies (q4,9c) € RA (qa,qc) =
(Qfauq/c) € 5.,

With the help of the above results, we can now prove the theorem.

Theorem [2.31l From propositions [2.33] and [2.34] it follows that 7(Ax C) C T (A
det(C)) and TV (A x C) C TY(A x det(C)); from propositions [2.36) and 2.37] it
follows that the inverse inclusions also hold. This implies the proof obhgatlon O

2.6 Implementation & Usage

The presented control language has been integrated into the GROOVE [Ren04]
tool. A screenshot of the program editor view is shown in Figure On top
of the language constructs described in this chapter, it allows the specification of
functions. During construction, a call to a function is replaced with a copy of the
body of such a function.

By pressing a button, a dialog can be opened that displays the constructed (regu-
lar) control automaton; guarded control states are generated in a lazy manner (i.e.,
on demand) during simulation of a graph grammar. A screenshot of the automa-
ton displaying view is shown Figure It displays the constructed automaton
for the program in Figure 2.1§

An unfortunate consequence of guarded control automata is the fact that there
is an exponential blow-up in the possible number of states (|Qg| = 2/%¢l) and
transitions in applying the det function (|—¢| is in the order of 2/7¢!) due to the
adding of positive and negative guards. By using a lazy construction of G states
during generation of the guarded system automaton, only those states are created
that are (obviously) possible, but - more importantly - are in fact used. In a small
test case that we have performed using a control program and a corresponding
control automaton with 19 states and 9 failure transitions, only 17 distinct guarded
control states were used during generation of the guarded system automaton (of

Chapter 2. Controlled Graph Transformation

antworld@start | antworld u Si

Eie Edt Yiew Esplore Verfy Estemal Help

57 cleanup_index ¥
%, diop_food \ o \
%3 end_tum @ Disabls Control
%7 evapoiale =
2? expand_atis 1| antworldis; —
=9 expand_end 2
) 3| function antworld()
3 crpand_stat a while (zruz) do { main(i; }
%7 mave_end sf
%% move_home 3
%7 [move_iandom) 7| function maini) {
%7 move_randonnest 8 alap { reproduse; }
%% move_randormout) turni) ;
2,# move_randomtexn 10 evaporate;
?'?WDVEJE"dD"“"“D 11 if(on_edge) { growi): }
5 mave_search 12 end_tums
57 move_stait 3]y
%, on_edge 14
7 pickup_food 15| funetion turni) {
%7 put_food
15 nave_start;
7 rodice 17 until tmove_end) do {
i B Malch 1 -
18 try { drop_food; |
19 try { pickup_food; }
20 try { move _home; |
21 else { try { move_search: }
2z else { mowve_) | mowe) | move_3 | mowve_) it
23 13
24 ¥
25y
Start Graphs e
27| funetion grow() {
28 expand_stare;
29 until texpand_end) do {
30 try { espand axis; |
31 else { =xpand normal; }
3z ¥
33 put_food:
34 cleammp_indsx;
a5y
38

Figure 2.18: A Screenshot of the Control Editor.

Control Automaton

Labels
D)

[dhop_food]
[expand_avis]
[expand_end]
[move_end]
[move_home]
[move_search
[on_edge]
[pickup_food]
Treproduce]
__LAMBDA_|
cleanup_inde:
diop_fond
end_tun
ove_gnd evaporate
expand_ais
arpend_end
expand_norm
expand_start
mave_end
mave_home
mave_tandom|
mave_tandom|

move_randomnest

fprup_ o move.sardr
move_random|
move_andom-ug A
[move_pope) expand_start move_seaich
move_start
439 on_edge
A pickup_food
|eleanup_indexsnd_end put_food

reproduce

expand a
[evpand_ais] “put_faod

KNz N

Figure 2.19: A Screenshot of the Automaton View.

2.7. Conclusions 47

a maximum possible count of 524288). In our experience, a single Rule is rarely
used twice in a control program, limiting the number of guarded control states
and the number of transitions a great deal.

By using the control language ourselves, we have established that it increases the
ability to specify complex rule systems in a clear and intuitive manner. A good
example is the “AntWorld” case study in the GraBaTs 2008 [RvGO08| workshop,
for which the behaviour of an ant colony has been specified consistent with a
supplied description. Here, the use of a control program reduced the use of control
information in the graph a great deal. Also a lot of negative application conditions
could be left out. A summary and discussion of the specified solution can be found
in [SRO8|]. The graph grammar can be downloaded from http://alturl.com/
896Db.

2.7 Conclusions

2.7.1 Related Work

There are two important areas of related work: on the one hand, other approaches
to add control to rule-based systems, and on the other, results from process alge-
bra.

Other approaches to control.

Although we have presented this work in the general context of rule-based systems,
as far as we are aware most of the work on explicit control for such systems has
been done for the special case of graph transformation systems; therefore, this is
what we will focus on.

First let us remark that in this chapter we have concentrated on one particular
method of controlling rule applicability. There are others, such as application
conditions (e.g., [HHT96, [HP05]), which have their own advantages and may very
well be used in conjunction with control expressions. Where application conditions
are typically suitable to specify constraints and conditions on the rule application
based on the system state, the control expressions in the thesis are better suitable
for simplifying rule dependencies and thereby reducing control information from
the graphs. For example, there may be two or more rules to perform a specific
action in different scenarios. Where the control program would schedule all of these
rule in the right moment, application conditions can aid the rules in matching the
right scenarios. Moreover, control can aid in matching these rules in a particular
order to, which can increase the performance.

http://alturl.com/896b
http://alturl.com/896b

48 Chapter 2. Controlled Graph Transformation

One of the first developments in the direction of using explicit control expres-
sions for graph transformation was the PROGRES environment; see, e.g., [Sch90,
SWZ99]. The aim here was to obtain a powerful and usable framework for pro-
grammed graph transformation, rather than study the theoretical properties of
such a framework (although a translation into flow graphs was studied in [ZS92]).
In the same vein, the control languages in tools like VIATRA2 [VB07] and VMTS
[LLMCO6] stress power and usability over theoretical properties. FUJaBA has
the appealing graphical storyboard language for control [FNTZ00], but here the
control is completely integrated with the rules and does not lend itself at all to an
analysis like the one in this chapter.

The theory behind control conditions for rule-based systems has been studied in-
tensively in the context of graph transformation units by Kreowski, Kuske and
others; see, for instance, [KK96, [KK99, [Kus00]. However, they take a perspective
that is quite different from ours, and indeed represents the input-output inter-
pretation discussed in Section [2.4] insisting that “every description of a binary
relation on graphs may be used as a control condition”. Also in that interpre-
tation, Schiirr [Sch97] contains a systematic discussion of various operators and
their meaning, and Habel and Plump in [HP01] show the minimality of the control
language consisting only of choice, sequential composition and alap. In [PS04], a
while—do is added to this language, to increase usability. We strongly believe that
also the try—else operator of this chapter is useful in that regard.

In term rewriting, languages such as ELAN [BKKM02], Maude |[CDE"02], and
Stratego [Vis01] allow defining transactions, strategies or programs over rules.
These systems, typically used for program/model transformation, provide more
control over the selection of rules and the order of normalization. Since the goal is
the target model, these control directives have an input/output semantics, rather
then a reactive semantics, such as presented in this chapter.

Finally, it is worth mentioning that the tools GrEAT [VNST06] and ATOM?3
[SV07] include facilities for rule scheduling based on data flow rather than control
flow.

Failures in process algebra.

A weak link exists to the concept of failure semantics in process algebra, as devel-
oped in [BHRS&4], leading to the formalism of CSP [Hoa85|; and a slightly stronger
one to the refusal testing semantics of [Phi86], where failures can be interspersed
with ordinary actions. The failures in those papers, however, are solely used as
observations of the execution capabilities of a process, never to control the pro-
cess. Thus, despite the superficial similarities, the models and their purpose are
quite different from the research reported in this chapter.

2.8. Future Work 49

2.8 Future Work

By allowing named procedures in our control language, it is possible to simplify the
product automaton to abstract from the details of such procedures, by replacing
the application of the procedure with a single transition. Intuitively, control can
be used to simplify rules that model complex processes, i.e. processes that can
not be expressed by a single rule. By allowing this atomicity, we can visualise the
process as a single action.

These same procedures can be used for specifying transactions. When a procedure
can not be exited successfully, one could require to roll back the preceding rule
application. Intuitively: the process spread over a group of rules, could not be
finished completely. Would one consider the process being a single rule, it would
not have been applied at all.

While we solved the problem of controlling the order of rules, we could extend this
work with parameterized rule applications. A rule application would bind certain
nodes to variables, where these bound variables can be used in the application
other rules. This allows control of where the rule is applied (in case of more
then one option). For example, one might like to do an operation on all elements
of a linked list. Assuming the operation on a single element can be specified
with a single rewrite rule, one could require the operation to be finished before
applying any other rules by using the alap keyword. The structure of the linked
list however, calls for coding the next element of the list to do the operation on;
this avoids the complex task of finding the first element the operation has not yet
been applied on (which might not even be possible). With parameters, the next
element can be matched and bound to a variable, to be used as the current element
in the next rule application. This avoid the use of control information in the states
(and rules) even more. In fact, this extension is currently being formalised and
implemented by a Master student.

2.8.1 Contributions

In this chapter, we have presented a control language for the specification of control
expressions for arbitrary rule systems. It provides an intuitive way for the user to
specify control expressions.

We have also defined an automaton formalism for controlling rule applications
in rule-based systems. We have introduced the notion of failure as the non-
applicability of a set of rules in a certain state, and used these failures as an
element of control in our automata.

The semantics of the language is described as the control automata that represent

50 Chapter 2. Controlled Graph Transformation

programs written in the language. We have defined construction operations from
language construct to control automata.

The resulting behaviour is defined as the product with a system automaton, an
automaton representation of the uncontrolled rule system. The result is a reactive
semantics for control expressions.

The control language and automata and product only require the existence of a
rule system having rules with certain names, and the representation of a system as
an automaton. Therefore, the control expressions are specified without reference
to any particular rule system. The proposed approach can therefore be used by
any rule base system that uses named rules.

We have explained how the defined product operation can introduce spurious non-
determinism and how this can be harmful. To solve this issue, we have introduced
a formalism for guarded control automata and the corresponding product oper-
ation, that — when applied to a deterministic system automaton — results in a
deterministic controlled system automaton. We have proved that the languages
of products using a normal and the corresponding guarded control automaton
coincide.

We have implemented (a superset of) the control language and semantics presented
here as an extension to graph transformations in the GROOVE tool. In future
work, we foresee extensions the described control expressions with features such
as atomic procedures, transactions and rule parameters.

Chapter 3

A Graph-Based Execution
Semantics for Composition Filters

3.1 Introduction

In this chapter we present an execution semantics for the Composition Filters
model. The Composition Filters model is an enhancement of the object-oriented
model, that enables AOP by intercepting and manipulating messages between
objects. The CF model has evolved from the first (published) version of the Sina
language in the late 1980s [ATS8S, [ABV92], to a version that supports language
independent composition of crosscutting concerns [BA04, [SEGQ9]. Despite the rich
history of Composition Filters, the execution semantics has never been defined in a
formal language. The specification language of our choice is graph transformations.
In Section we have explained the advantages of graph transformations over
other formal specification techniques using textual notations.

This chapter is structured as follows. In the next section, we give an in-depth
explanation of the Composition Filters Model. In Section we elaborate our
goal and illustrate the approach used. In Section we discuss the graph-based
representation of Composition Filters programs. In Section we give these pro-
grams a control flow semantics, followed by the execution graphs in Section [3.6
and the run-time semantics in Section In Section |3.8| we discuss certain prop-
erties of our approach, such as correctness, its usefulness, understandability, and

o1

52 Chapter 3. An Execution Semantics for Composition Filters

extensibility. Finally, in Section we compare our work to related work, discuss
future work, and we elaborate on the contributions of the semantics presented in
this chapter.

3.2 Introduction to Composition Filters

In this section, we discuss the aspect-oriented principles of the Composition Filters
(CF) model. We start by giving a conceptual illustration of the Composition
Filters model. Then, we explain the CF language and the model we use throughout
this chapter to represent CF programs.

3.2.1 The Composition Filters Model

The Composition Filters model is a modular extension of the conventional object-
based model. In object-oriented systems, objects send messages to each other, e.g.
in the form of method calls or events. The Composition Filters model extends the
concept of message sending with message interception and manipulation. This
allows expressing many behavioural manipulations of object-based systems, since
all visible behaviour of an object is triggered and manifested by the messages
it sends and receives. Figure illustrates the extension, which is realised by
enhancing a traditional object — the so-called implementation object — with an
outer layer of filters. The enhanced object is referred to as a concern instance.
Traditional objects still exist as concern instances without filters. All incoming and
outgoing messages must pass the filters of a concern instance. The filters define
enhancements to the behaviour of objects. Each filter is intended to perform
a specific manipulation to certain incoming and outgoing messages. Incoming
messages pass through input filters, while outgoing messages pass through output
filters. The filters are grouped into so-called filter modules, which are meant to
group filters with a collaborative responsibility and allow reuse of this functionality.
A filter module is in fact the unit of instantiation that is added to the traditional
objects.

Filter modules also provide an execution context for the filters. This context
consists of named variables referring to instances of other concerns. The CF model
distinguishes two different kinds of variables in the execution context: internals
and externals. Internals are objects that are local to the filter module instance.
Externals are objects that represent shared state and can be shared between filter
modules and the base program.

The filters express which messages are accepted and rejected by means of filter
expression. A filter expression is a simple, declarative expression to match and
modify messages. The filter expression may contain certain conditions on the state

3.2. Introduction to Composition Filters 53

incoming outgoing
essages messages
S filter
TN modules

methods

internals &
externals

implementation
object

N

%

(

\ i\ “/ ‘

\ Jinstance
/variables

conditions!

Figure 3.1: Simplified representation of a concern instance with filters.

and structure of the system; this state is reflected by the message, the implementa-
tion object and the execution context. Although the implementation object may
be defined in any object-based language, the Composition Filters language is a
language-independent extension to the underlying object-oriented language. To

be able to specify expressions over this state, the following abstraction mechanisms
are used:

e The run-time state is captured using conditions. These named variables refer
to boolean methods (represented by the diamond shapes in Figure in
the implementation object or the execution context, which are expected to
be side-effect free. Conditions are evaluated right before a message enters
the filtering mechanism. A filter expression may refer to these conditions.

e Regular methods (represented by the rectangles in Figure|3.1)) are identified
by their name; they implement the functional behaviour of the object. A
signature match — which can be specified in a filter expression — can test

54 Chapter 3. An Execution Semantics for Composition Filters

whether a message can be accepted by any of the methods in an objects
interface.

e The name of the incoming message — reflecting the name of the called
method — may be matched against a certain static value using a so-called
name match. The name of a message is called a selector.

Each filter can either accept or reject a filtered message based on the filter
expression. The semantics associated with acceptance or rejection depends on the
type of the filter. These types define the execution of certain actions. Examples
of predefined filter types and their semantics are:

e Dispatch: if the message is accepted, it is dispatched to a specified target ob-
ject; if the message is rejected, it continues to the subsequent filter [ABV92).

e Substitute: filters with this type can substitute certain properties of messages
explicitly on acceptance of the message, for instance the target object or the
selector of the message. A rejected message continues to the subsequent
filter [BAO4].

e Error: if the filter rejects the message, it raises an exception; otherwise the
message continues to the subsequent filter [ABV92].

o Meta: if the message is accepted, the message is reified and sent as a pa-
rameter of a new message to an internal or external; otherwise the message
continues to the next filter. The object that receives the message can observe
and manipulate the reified message and reactivate its execution [AWBT93].

Typically, messages travel sequentially along the filters until they are dispatched.
Dispatching here means either to start the execution of a local method or to
delegate the message to another object.

Composition Filters is among the AOP languages where aspects are added to
the objects modularly (also called black-box AOP approach). Languages that
introduce aspects as proxies/interceptors can also be put into this category, such
as SpringAOP |[JHA™]. Such approaches may have the following advantages:

1. The AOP extension can be designed in a base-language-independent way;

2. Advice respects the encapsulation of modules; aspects only affect incoming
and outgoing calls;

3. Interface-based composition, due to encapsulation and well-defined method
interfaces.

19

21

22

3.2. Introduction to Composition Filters 55

concern JukeboxCredits {
filtermodule TakeCredits {
externals
credits : jukebox.Credits =
jukebox . Credits.instance () ;
conditions
hasCredits : credits.hasCredits();
inputfilters
check : Error = { hasCredits => [x.x%],
True "> [x.play] };
withdraw : Meta = { True => [x.play]
credits.withdraw }

}
superimposition {
selectors
selection = { Class | isClassWithName (Class,
’jukebox . Jukebox) };
filtermodules
selection <— TakeCredits;
}

Listing 3.1: An example concern specification in Composition Filters

3.2.2 The Composition Filters Language

This section explains the syntax of Composition Filters. For illustration, we refer
to an example of a Composition Filters specification, which is shown in Listing[3.1
It assumes there is an implementation of a jukebox.Jukebox class, which has a play
method for playing songs. The specification in the example adds functionality to
refuse playing of songs based on the number of credits, and withdraws one credit
for each played song.

A concern is the main unit of modularization to specify crosscutting concerns in
Composition Filters. Listing [3.1] starts with the concern specification of Jukebox-
Credits. We first briefly discuss the example concern. Then, we discuss it in more
detail.

Example 3.1. Line 9 of Listing[3.1] shows the declaration of an input filter check,
which has the filter type Error and on line 11 a filter withdraw is declared with filter
type Meta. The ;7 on the end of line 10 represents the sequential composition of
the two filters.

The check filter consists of two filter elements: hasCredits => [**] and True ~ >

56 Chapter 3. An Execution Semantics for Composition Filters

[*.play]. The “7 in between represents the conditional OR.

The first filter element consists of a condition expression hasCredits, a name match
denoted by the square brackets [*.*] and the default substitution part *.* (since no
substitution part is given). The => is called a condition operator and means that
no negation is used in the matching expression.

The second filter element consists of a condition expression True, a name matching
part [*.play] — which matches all filtered messages with selector play — and again
the default substitution part. Here, the ~ > means that the matching expression is
negated. Thus, the second filter element matches any message that does not have
a selector play.

The withdraw filter consists of a single filter element with a condition expression
true, no negation, a name matching part [*.play] and a substitution part cred-
its.withdraw, which can be broken down to the target credits and a selector draw.

The example does not have a signature match. An example signature match
<credits> would test if the incoming message could be accepted by the declared
external credits.

A concern consists of a set of filter modules (line 2-13), and a superimposition
(line 15-21) specification. The filter module specifies which messages are inter-
cepted and how they are manipulated, whereas superimposition specifies where
the filter modules are applied.

Superimposition provides the mechanism to specify crosscutting concerns in
a modular way; it allows to “export” behaviour to other concerns. A superim-
position specification selects a set of relevant classes in the base program and
superimposes filter modules on each class in this set. The superimposition clause
consists of the following elements:

e A set of selector declarations, which refer to elements in the base pro-
gram. These selectors use Prolog queries on the static structure of the base
program. Line 16 in Listing[3.1|shows an example selector declaration. The
selector selection uses a logic variable Class and a predicate isClassWithName
in its declaration. This predicate will select the class jukebox.Jukebox (by
using its fully qualified name). Note that the variable Class is a logic variable
that may refer to not only one, but multiple program elements as well.

e Filter module binding specifications declare superimposition of a given
filter module on the set of classes designated by a selector. This means that
a new instance of the superimposed filter module is associated with each
new instance of the designated classes, and each incoming and outgoing
message is filtered by the superimposed filter module instances. Line 19 in

3.2. Introduction to Composition Filters

Var var FilterModule

name : string 0.% name : string
eIpr
FilExpr right:

N
reject
Vs
FilterAction Filter

name : string name : string

]

<
accept.
expr

right FilEIExpr

| FIEICOR |—left] FilterElement |@——subst>]
4

SubstPart

target : string

selector :

string

cexpr

=
I—MAtchNEG mexpr I=MatchNEG
XPr%ri ht

MatchNEG left: MatchCOR

SigMatch
NameMatch
selector : string

Figure 3.2: Abstract Syntax Tree of a Filter Module.

o7

Listing shows an example of the filter module binding specification: the
filtermodule TakeCredits is superimposed on the selection selector, i.e. on

class jukebox.Jukebox.

Filter modules are the units of reuse and instantiation of crosscutting behaviour.
Lines 2 - 13 of Listing present a filter module specification. As said, the
filter module declares an execution context for the filters, consisting of internals,

externals, and conditions:

e Internal and external declarations provide an execution context for the
filters. Internals are objects pertaining to the filter module, while externals
are references to instances created outside the filter module and concern,

58 Chapter 3. An Execution Semantics for Composition Filters

which are used for representing shared state. Line 4 of Listing[3.1] shows the
declaration of an external credits using its fully qualified name — namely
jukebox.Credits — following by the instantiation specification. Internals are
declared in a similar way, and are preceeded by the “internals” keyword.

e Condition declarations declare a condition by its name and map it to a
method. This method must implement a side-effect free Boolean expression
and must be in the execution context of the filter module, i.e. in the imple-
mentation object or any of the internals or externals. Typically, conditions
provide run-time information about the state of an object. Line 7 of Listing
[3:1] shows the condition declaration hasCredits that is mapped to the result
of the hasCredits() method of the external credits. Conditions are only eval-
uated once during the filtering of a message, namely when a message enters
the filter module. This means that, even though the behaviour of the filter
module can affect the result of a Boolean method referenced by a condition,
this is not reflected by the value of that condition.

A filter module specification also consists of a set of filter declarations. In-
putfilters manipulate incoming messages received by the implementation object,
whereas outputfilters manipulate outgoing messages sent by the implementation
object. Therefore, the Composition Filters model only deals with two kinds of
join points: message reception and method call. For simplicity, we only handle
inputfilters in this work. Outputfilters can however be dealt with in the same way.

We explain the structure of the filter declarations in more detail using the syntax
model used in this work. This is shown in Figure[3.2] The italic labelled elements
are abstract types. The top-level element of the model is the filter module (Filter-
Module), with a fully qualified name. The filter module consists of a number of
named Var nodes, which represent the internals and externals. Conditions are not
represented in the model; later in this chapter we explain how these are represented
instead. A filter module has a filter expression (FilExpr), which can either be a
filter (Filter) or a sequential composition operator (FiISEQ), with on the left side
a Filter, and on the right side another FilExpr.

A filter has a name and a type. The type of the filters in the syntax is represented
in Figure by an accept and a reject FilterAction. A filter also contains a filter
element expression (FilEIExpr), which can be either a filter element (FilterElement),
or a conditional OR (FIlEICOR) with a FilterElement on the left and a FilEIExpr on
the right.

A filter element consists of a condition expression (CondExpr), a matching ex-
pression (MatchExpr) and a substitution part (SubstPart).

The condition expression is a boolean expression that may use the boolean
values True and False, declared conditions in filter module, and condition operators

3.2. Introduction to Composition Filters 59

&& (AND), || (OR), and ! (NOT). The default boolean literal True is used when
no condition expression is given.

A substitution part is an argument for the filter action and consists of a selector
and a target part. The selector may for example be used to replace the selector of
the filtered message. The target must be the name of one of the declared internals
or externals, or one of the special keywords inner (the implementation object), or
sender. The default value *.* is used when no substitution part is specified, and
evaluates to the filtered message’s current target and selector.

The matching expression can be a negation (MatchNEG) of a MatchExpr, a
match (Match), or a conditional OR (MatchCOR) with a left-hand-side Match and
a right-hand-side MatchExpr. A negation cannot be nested, i.e. only the entire
top-level expression can be negated. A negation of a conditional OR yields true if
and only if all nested matches yield false.

A match specification can be either a name match (NameMatch) or a a signature
match (SigMatch). The name match compares the specified selector with the
selector of the filtered message. A signature match, specified with a target object,
tests whether the signature of the filtered message is accepted by a given object
(i.e. if the called signature of the message is part of the interface of the class of the
specified object). We do not represent the target argument in our model. Instead,
we evaluate signature matches differently, which we will show in Section [3.7]

3.2.3 Meta Filters

The Meta-filter type has a special semantics among the predefined filter types:
it reifies the message that is matched by its filter specification, and sends it as
an argument in a method call on an instance of an ACT (AdviCe Type) class.
An ACT class is a regular object-oriented class with methods that take a single
argument of the type ReifiedMessage. For instance, lines 11-12 in Listing [3.1] show
an example of the Meta filter specification. If the incoming message is play, the
filter withdraw will reify the message and pass it as an argument in the method
call withdraw on the external credits. Execution continues at this method, which
is shown in Listing Calling resume() resumes the execution of the filters.
Also note that the example also shows the implementation used for evaluating the
hasCredits condition, which is a regular boolean method.

An ACT class can inspect and manipulate the message, and reactivate it in various
ways [Sta05], namely:

e The proceed() method blocks the ACT and continues the evaluation of the
filters. After dispatching the message to and returning from the message’s

60

Chapter 3. An Execution Semantics for Composition Filters

class Credits {

private int credits = 0;

public void withdraw (ReifiedMessage m) {
this.credits ——;
m. resume () ;

}

public boolean hasCredits () {
return (this.credits > 0);
}

Listing 3.2: An example ACT class.

target the ACT resumes execution. The mechanics are similar to proceed as
it is know from AspectJ [KHH™01].

e The resume() method continues the execution of the filters and continues

the execution of the ACT in parallel.

e The return(..) will return to the caller — optionally with the given argu-

ment — immediately and will cause the evaluation of any other filters to be
skipped.

e The respond() method will return a null value to the caller causing the

caller to continue, and continues message evaluation in parallel. A return
value resulting from dispatching the message will not reach the caller.

e The send(Object target) method will send a copy of the message to the

given target. This will block the evaluation of the original message unless
respond() has been called first.

3.3 The Goal and the Approach

In this section we elaborate on our goal and explain the approach used for achieving
this goal.

3.3. The Goal and the Approach 61

3.3.1 Goal

Composition Filters allows for modular verification of crosscutting concerns. How-
ever, the combined behaviour of the base system and the aspect may not be trivial,
as we explained in Section Therefore, we want to be able to analyse and ver-
ify Composition Filters specifications. We choose to do that by defining a formal
semantics of run-time behaviour of the language. The goal of this semantics is to
use it for verification of Composition Filters specifications. This semantics must
satisfy the following requirements:

e We want to be able to simulate Composition Filters specifications using the
semantics. In other words, we need the semantics to be executable.

e To maximise the capability offered by the semantics for analysing properties
of the Composition Filters specification, we want it to have a reactive nature,
i.e. we want to be able to see all steps during the execution of the system.

o We want the semantics to offer an abstraction of the base system. This not
only allows verification of larger systems, but may also allow proving certain
properties for a Composition Filter specification composed with any base
system that satisfies certain properties. Besides that, we do not want to
specify the semantics of the base-language as well. In essence, it must be
able to simulate Composition Filters specification in a modular way.

e We want the semantics to be extensible, to be able to incorporate future ex-
tensions of the language or user-defined filter-types. Ideally, it must therefore
also be understandable.

3.3.2 Approach

We choose to specify a small-step execution semantics of Composition Filters. We
use graph transformations as the language for specification of the semantics. We
feel that graph transformations can model programs in a natural way (i.e. by rep-
resenting classes and objects as nodes, and relationships as edges), thereby coming
closer to our need for the semantics to be understandable as well as extensible.

The approach is visualised in more detail in Figure [3.3] Beginning from a pro-
gram’s source, specified in the Composition Filters language, the program is parsed
and subjected to static analysis, resulting in an abstract syntax tree (AST). The
AST — or a specific part of it — is transformed into a graph representation of the
syntax, a so-called abstract syntax graph, corresponding to the model specified in
Figure (3.2

62 Chapter 3. An Execution Semantics for Composition Filters

L

abstract
syntax
graph

abstract e
syntax S
tree 1

L
program
source

- -

flow graph
construction

I}
program
graph g
j_[runtime
‘ semantics
Simulation ? | R
execution
graph g

LTS

/ ‘ ‘

Figure 3.3: Overview of the approach.

The semantics of the language is specified using graph transformations. This
is divided into two steps: a control flow semantics and a run-time semantics.
Applying the control flow semantics to the abstract syntax graph creates explicit
control flow information, resulting in the so-called program graph. The program
graph and the run-time semantics combined can be used to simulate the execution
of the program represented by the graph.

Depending on the part of the system that is represented (i.e., the classes and
superimposed filter modules) the semantics can be used to simulate messages sent
to instances of these classes. In Chapter [5| we show a use of the semantics where
each generated graph represents one class and the superimposed filter modules.

The result of simulation is a state space represented as a labelled transition system
(LTS), where states are represented as so-called execution graphs, and transitions
are rule applications. Execution graphs are program graphs with additional in-
formation representing objects and processes (i.e., heap and stack). This reactive
view on the execution of the system can be used for various kinds of analysis and
verification.

3.4. Abstract Syntax Graphs 63

Argument

index : int

Figure 3.4: Type-Graph of the Base System Abstract Syntax Graph

3.4 Abstract Syntax Graphs

The generated abstract syntax graphs represent a number of classes and the fil-
ter modules superimposed on these classes. The type-graph of the filter module
representation is shown in Figure [3.2

The base syntax that is represented in the graphs consists of types and signatures;
the type-graph is shown in Figure[3.4] Although concrete types are never labelled
with Type, we use this label in the type-graphs in this section. Every type has a
name, which we represent with string attribute values (see Section for more
information on attributed graphs). A class is a specialisation of a type. Classes are
represented as Class-labelled nodes. Primitive types — although not supported
natively — can also be represented using Class nodes. Each class is connected to a
number of Signature nodes using signature edges; these represent the signatures of
the methods that can be invoked on instances of the class. A Signature is connected
to its arguments — Argument-labelled nodes with a type and an index — using
argument edges. Identical signatures are represented by a single node; this allows
for signature comparison by only looking at the node identity of the signature,
without having to compare both sub-elements.

Superimposition is represented by filtermodule edges connecting FilterModule nodes
to the classes that they have been superimposed upon. In other words, we repre-
sent superimposition after it has been resolved, which is done during compile-time
by an existing compiler implementation. A signature, which is used to identify
methods, is represented by a Signature-labelled node. A signature has a name
— specified with a string attribute — that represents the name of the invoked
method. A signature also has arg edges to Argument nodes. These nodes, which
represent the formal arguments in the method signature, have a type edge to a
Type node, and an index edge to an integer attribute value.

Figure [3.5] shows the abstract syntax graph that represents the example. It con-
tains the syntax of the TakeCredits filter module, and the Jukebox class. The two
are connected by a filtermodule edge. The class has a single Signature: the play
method that has one Argument of type Song. To represent the argument type, the

64 Chapter 3. An Execution Semantics for Composition Filters

Filterhdodule

filtermodul
temecuie name = '"TakeCredits"

sighature EXpr

Signature FilSEQ
name lay"
a

a left right
Argument
inde:
type accept teject accept reject
‘_, & Expr
Class ‘ Filter&ction Expr Filterdction Filterdction Filter&ction
name = "Song' name = "Continus e & i name = "Meta” FilterElement

cexpr mespr SHbst
left right e T R SubstPart
ondExpr ErELiEE selectar = “withdraw"
FilterElement FilterElernent | | Trye selector = "play“‘ target = "credits”

cexpl mespr subst cewpr mespr subst

NameMati’L SuhstPartm ConiEaT MatchMEG SubstPart
True

selector = selector =

e

target =

e target ="

Mamehdatch
selector = "play”

Figure 3.5: Abstract Syntax Graph of the Example.

Song class is also represented in the graph.

3.5. Control Flow Semantics 65

3.5 Control Flow Semantics

In this section, we present the control flow semantics of the Composition Filters
language. With this semantics, we can add explicit control flow information to a
syntax graph. This makes specification of the run-time semantics easier, because
in each execution step, control can be passed forward in a uniform way. In this
section, we first explain the details of the generated control flow graph, then we
discuss the control flow specification language, and then we give the action control
flow semantics.

3.5.1 Control Flow Construction

The control flow construction process is shown in Figure [3.6/ The control flow
semantics of syntax elements is expressed as graphs in a dedicated language for
this purpose, defined in [SRKO06]. Using another set of rules — the control flow
meta rules — these graphs are transformed to rules themselves. The generated
rules — control flow construction rules — together given to the simulator will add
explicit control flow to an abstract syntax graph, resulting in a program graph.

Figure [3.7] shows the type-graph of the control flow information. Every program
element the program counter may point to is recognised by a FlowElement node.
These nodes are in fact syntax element (i.e. the elements of Figure or aux-
iliary control flow nodes. A FlowElement node can have a flow edge to the next

graph-based
control flow semantics

control flow
meta rules

abstract
syntax
graph

‘;://
control flow
contstruction rules

program
graph Evj
T

_—

Figure 3.6: Overview of the control flow construction approach.

66 Chapter 3. An Execution Semantics for Composition Filters

flow

FlowElement

condition

flow

boolean:

Figure 3.7: Type-graph of Explicit Control Flow

FlowElement, or specify conditional control flow. The latter is represented by con-
necting the FlowElement to two Branch nodes, connected by branch edges. The
branchOn edge of the Branch node points to the required value of the branch. The
condition edge points to the condition of the branch, which is another FlowEle-
ment, which must be a boolean expression. The outgoing flow edge of a Branch
indicates the control flow when the value of the condition is equal to the value of
the branch, as indicated by the branchOn edge.

3.5.2 The Control Flow Specification Language

The control flow specification language is a graph based language. A specification
of the control flow of a syntax element starts with the graph representation of
the static structure of that element, i.e. the element itself and its children. The
element for which the graph specifies the control flow is tagged with a self-label
KeyElement. An outgoing exit edge to an unlabelled node represents where flow
goes when the element is finished. From the KeyElement, an entry edge specifies
where the flow starts. The entry can be the key element itself — represented by
a self-edge — or one of its children. Whenever — in the specification of another
element — a flow edge is specified to the specified key element, in fact a flow edge is
created to the entry of the key element. The actual control flow is specified either
by flow edges between the syntax elements, or by Branch nodes, similar to the
generated control flow graph explained above. For the clarity of the specifications
in this thesis, we use an enhanced graphical denotation. An example is shown in
Figure [3.8] Here, the black elements are all part of the abstract syntax graph.
The key element (also labelled KeyElement) is denoted with a thick border. It has
three child elements named Entry, Optionl, and Option2.

The control flow is denoted using gray (blue) thick arrows. The flow entry of the
key element (also labelled Entry) has an incoming flow edge that has no source
node. It then goes to the KeyElement and to an auxiliary Flow node, also denoted
using thick gray borders. These are used to take care of the flow behaviour of

3.5. Control Flow Semantics 67

Figure 3.8: Control Flow Definition Example.

a syntax node that also has some other behaviour. Conditional flow is denoted
with a dashed circle on the arrow. The circle is labelled with either ¢t or ff and
is connected to its condition with a dashed arrow. These in fact correspond to
Branch nodes with a condition and a branchOn edge. Flow ends at an Exit node
connected to the KeyElement.

As mentioned, the control flow specifications are transformed into rules that add
explicit control flow to an abstract syntax graph. For that purpose, first, each
syntax element that is part of the control flow is labelled with a FlowElement
self-edge. Then, the FilterModule node is given a KeyElement self-edge an exit
edge to a new auxiliary Exitnode. Thereby, control flow generation starts at the
FilterModule. Each control flow construction rule passes the Exit node and the
KeyElement edge down to its children, until the control flow construction phase is
finished.

3.5.3 Control Flow Semantics

We now enumerate the specifications of the language elements of Composition
Filters. The following points are noteworthy:

e For the FilterModule (Figure7 control enters at the FilExpr and from there
flows to the exit;

e For the FilSEQ (Figure [3.10]), control enters at the left Filter, then flows to
the right FilExpr, and then to the exit;

e For a Filter (Figure , control enters at the FilEIExpr, from there flows to
the Filter itself, where it branches based on the evaluation result of the expr

Chapter 3. An Execution Semantics for Composition Filters

right

FilExpr

Figure 3.10: Control Flow Specification of a FilSEQ.

to either the accept (on true) or reject FilterAction (on false). From both
these actions control flows to the exit;

For a FIilEICOR (Figure, flow enters at the left FilterElement, from there
flows to an auxiliary Flow node, where flow branches based on the evaluation
result of the filter element, to either the FilIEICOR (on true), or via the right
FilEIExpr to the FilEICOR (on false). Finally control flows to the exit;

For a FilterElement (Figure[3.13)), control enters at the CondExpr, from there
it flows via an auxiliary Flow and — on true — optionally via the MatchExpr
to the FilterElement. From there, control flows to another auxiliary Flow
node, from where optionally (on true) include the SubstPart is included,
before it flows to the exit;

For a MatchNEG (Figure [3.16)), control enters at the MatchExpr, then flows
to the MatchNEG, and from there to the exit;

For a MatchCOR (Figure(3.17)), control enters at the left Match, then flows to
an auxiliary Flow node from where optionally the right MatchExpr is included,
before it flows to the MatchCOR. From there, control flows to the exit;

For the remaining elements, (the SubstPart in Figure the CondExpr in
(Figure the NameMatch in Figure and the SigMatch in Figure
3.19)), control enters at the element itself and then flows to the exit;

3.5. Control Flow Semantics 69

FilterAction

expr

o
FilterElement
O

Figure 3.12: Control Flow Specification of a FilEICOR.

3.5.4 Example

Figure [3:20] shows a slightly edited syntax graph from the example, and the corre-
sponding control flow graph. To reduce the size of this graph, only the first filter
element of the first filter is included in the abstract syntax graph. Note that flow
edges, Branch nodes, and auxiliary Flow nodes are added, as well as a single Exit
for the FilterModule; this exit represents end-point of the control flow.

70 Chapter 3. An Execution Semantics for Composition Filters

subst SubstPart

Y
CondExpr el | Flow | | [mMexpr TSl % Exit !
4

<

MatchExpr

Figure 3.13: Control Flow Specification for a Filter Element

£ Y
N - 7

Figure 3.14: Control Flow Specification of a SubstPart.

Figure 3.15: Control Flow Specification of a CondExpr.

ye - Y
MatchExpr [«—— @] MatchNEG | - - - - - = 33 | Exit)
——{ MatchExpr | P MatchNEG > Bt |

Figure 3.16: Control Flow Specification of a MatchNEG.

3.5. Control Flow Semantics 71

MatchCOR |- = = = = = = DI B)

MatchExpr

Figure 3.17: Control Flow Specification of a MatchCOR.

Figure 3.18: Control Flow Specification of a NameMatch.

Figure 3.19: Control Flow Specification of a SigMatch.

72

Chapter 3. An Execution Semantics for Composition Filters

Filterhdadule n | Exit
name = "TakeCredits" ' FlowElerment

flow branchOn = false

l 0
branch

FilterElernent |
CondExpr
EleElomen [€cE4p— FlowElement Flow— Flow
T FlowElernent
I
flows branch
flows h 4
Branch
Eranch
fl subst _
"™ | branchn = false branchOT = true
branch mipr flower
3 FlowElement ¢
Flows Marmehdatch FlowElement
FlowElement selector = ™" SubstPart
selector ="
branch flawes target = """
Branch

branchOn = true

flaws

expr flows Flow
—— >&‘ Filter Filterdction
Filteracti
Herhction . FlowElement ——accept—3 FlowElerment
FlowElement M—rejsst— " o T
natne = "Error” name = "check’ name = "Continue
Haw branch FEW branch o
Branch expr Branch
branchOn =falze Branch

branchOn = true

Figure 3.20: Example Control Flow Graph.

3.6. Execution Graphs 73

3.6 Execution Graphs

To specify the execution semantics of Composition Filters, we must also model
the run-time state in the graphs. We extend the abstract syntax graph and control
flow graph to an execution graph. These execution graphs essentially represent a
part of a snapshot of the state of the system.

3.6.1 Value Graph

The value graph represents the values in a run-time state. To represent the exe-
cution of Composition Filters, at least the following values must be represented:

e The target of a method-call, which is an object (e.g. an instance of a class).

e The evaluation results of the actual parameters of a method-call; the param-
eters themselves — which are in fact expressions — are not required for the
execution of CF; we assume that they have already been evaluated before
the method-call is executed.

e The execution context of a filter module, consisting of instances for the
internals and externals; although the filter module is seen as the unit of
instantiation of a traditional object, we can simply extend the traditional
object with values for each of the internals and externals, similar to class
variables.

e Temporary results of evaluating filter expressions, which consist of boolean
expressions.

The type-graph of the value graph is shown in Figure |[3.21] To store a value we
introduce Slot nodes, with a value edge to a Value node. Values of variables are
stored in VarSlot-labelled nodes, which are related to a declared Var, for instance an
internal or external. Temporary evaluation results are stored in AuxSlot-labelled
nodes, which are related to an Expression. In fact, each syntax element used in
a filter expression extends this abstract type, although we do not label them as
such. For simplicity, we will also assume that an Argument extends the abstract
type Expression; we can then represent actual arguments as AuxSlot nodes with an
at edge to an Argument node. A Value node can currently only be an Object (i.e.
an instance of a class) with an instanceof edge to its type. Primitive literals can
however simply be represented by Object nodes with a instanceof edge to a Class
node that represents a primitive type.

74 Chapter 3. An Execution Semantics for Composition Filters

var

ICERIEEY]

Auxsiot | [varsiot

type

aux 0. <

target

parent

FlowElement

filters
MethodFrame FilterFrame

signature 1.7 pending

Signature FilterModule

selector : string

Figure 3.22: Type-graph of the Frame Graph.

3.6.2 Frame Graph

The frame graph represent the process part of the current state. In compiler
terms, this corresponds to the stack. The type-graph of the frame graph is shown
in Figure [3.22] The frame graph refers to elements of all other graphs, i.e. the
abstract syntax graph, the control flow graph, and the value graph. Essentially,
only one new type of node is introduced: the Frame node. In general, a Frame
controls the execution of the code at a particular context. A Frame controls the
execution of the corresponding code by maintaining a pc-edge (where pc stands for
program counter) to the current FlowElement in the flow graph of a context (e.g. a
method or a filtermodule). The pc-edge is moved to a successor in the flow graph
at every execution step. When a method is called or a new object is constructed,

3.6. Execution Graphs 75

a new, nested frame is created for it and the pc-edge is (temporarily) removed,
indicating that the calling frame is passive while the nested frame is running.
Obviously, each nested frame has a parent frame, referenced by a parent-edge.
When a nested frame is finished, it is deleted and the program counter of the parent
frame is restored; however, restoring parent frames is not part of this semantics,
because the intercepted message still has to be dispatched (i.e., it has no program
counter yet). Furthermore, frames can have local and auxiliary variables. In this
semantics, we do not use local variables; filter modules do not have any. The
auxiliary variables for storing evaluation results — which are part of the value
graph — are referenced by aux-edges. A frame may have a self-edge to the object
that is the context of the operation being executed. Furthermore, a frame may
have a target edge, which is the reference used for meta-operations such as method-
lookup and dispatch. The self-edge is in fact create at dispatching to the target
of the target-edge. We distinguish between two kinds of frames.

e Method Frames represent the instantiation of a method context, and are
responsible for everything dynamically related to the method execution.

o Filter Frames represent the instantiation of a filtering context and are re-
sponsible for everything dynamically related the filtering mechanism.

A MethodFrame refers to a Signature by means of a signature-edge. Besides that,
a number of auxiliary edge can be used on the MethodFrame, that are used during
the process of invocation:

e init. A new method frame starts in the init state, indicated by an init-
self-edge.

e filtering. When the receiver of the method-call is enhanced with filter
modules, the init-edge is replaced by filtering-edge. During the filtering
process, the state is updated to either dispatch or abort.

e dispatch. This edge indicates that the frame can be dispatched. In fact, this
edge triggers the method-lookup process, which is not part of this semantics.
When the target of a method-call is not enhanced with filter modules, the
init-edge is immediately replaced by a dispatch-edge edge.

e abort. This edge indicates that the message is aborted by an exception.
When there is an abort edge, the message will not be dispatched.

A FilterFrame is connected to a method frame in the filtering state via a filters
edge. This method frame represents the intercepted message in the CF model.
The filter frame is connected via pending edges to the filter modules that are
superimposed on the target’s class. When a filter module is selected for execution,

76 Chapter 3. An Execution Semantics for Composition Filters

the pending edge is removed. When no more pending edges exist, the filtering
process is finished. The outgoing target edge is the result of evaluting the target
part of a substitution part; the selector edge is the result of evaluating the
selector part of a substitution part. Since the target of the filtered message can be
changed by a filter, the self edge of the FilterFrame points to the original target
of the method-call. In Composition Filters, this object is referenced by the inner
keyword.

3.6.3 Execution Graph

An execution graph used in the simulation process of a Composition Filters pro-
gram consists of at least three frames:

e A MethodFrame that represents the message (i.e. the intercepted method-
call); the target of this frame represents the target of the message in the
Composition Filters model; the name of the Signature referenced by this
frame represents the selector of the message;

o A MethodFrame that is the parent of the first frame. The self edge of this
frame represents the sender of the message.

e A FilterFrame that is responsible for the filtering mechanism.

o Fi
filtering rame

sighature target

Sb/Ect sl - tethadFrame filters. parent: ARG abisch

self walue

Object wale AuxSIot Signature Object pending:- WarSlot
narne = "play"
instancenof . instanceaf

instancenof

arg signature
Class Class . Filtertdodul
type— Argument filtermodule: terriadule . Var
hame = Song index =00 name = "Jukebox name = TakeCredits" T ¥a= e ite”

Figure 3.23: Example Execution Graph

An example of a minimal execution graph for the example is shown in Figure[3.23
It represents a snapshot of the run-time state right before a message (with selector
play) sent to an instance of the JukeBox class is filtered. The graph can be used as
a start graph for the semantics defined in the next section. The abstract syntax
and control flow graph of the filter module has been omitted. The graph consists
of three frames.

3.7. Runtime Semantics 77

The left-most Frame has a self edge to the sender of the message. All other parts
are not required for the execution .

The middle frame, a MethodFrame, has a parent edge to the first Frame, a target
edge to the target of the message, an init self-edge to represents its execution
phase, and an AuxSlot node for the method argument. The name of the Signature
connected to the frame represents the selector of the message.

The FilterFrame is connected to the second MethodFrame with a filters-edge and
a parent-edge. It has a pending-edge to the FilterModule that it will execute once
the state of the MethodFrame is updated to filtering.

The target object has a var edge to a VarSlot node that holds the value of the
external declared in the filter module. The FilterFrame has a self label to the
target object. Although the target of the MethodFrame can be changed during
the execution of the filter module, this self reference cannot, since it is used for
locating internals and externals instances.

3.7 Runtime Semantics

In this section we will show the specification of the run-time semantics for Com-
position Filters as a graph-transformation production system. The run-time se-
mantics has been defined by a single rule for each type of syntax element of the
language. These rules are specified by hand but, once fixed, allow the method to
be applied to any CF specification. The rules can be divided into two categories.
The first set of rules is used to specify the semantics of the filtering language.
When simulated, these rules evaluate whether a filter should execute either its
accept or reject action. The other category consists of a rule for each type of filter
action, and describes the actual behaviour of the filters: the effect of the action
on the state of the system.

3.7.1 Filter Actions

The rules that specify the semantics of the different filter actions perform the
actual behaviour of the filters. The rules involve a modification of the run-time
state, represented by the execution graphs. We will illustrate this using the filter
actions used in the running example. In this work we define the semantics of
the actions actions Dispatch, Error, Substitute and Continue, which can be used
to simulate filter with filter-types dispatch, substitute, and error. Filter type
meta calls a method that is specified in the base-language. Specifying the precise
semantics of a filter with this type involves a specification of the base-language as

78 Chapter 3. An Execution Semantics for Composition Filters

dizpatch target

- ~filters - - - FilterFrame - - pe Filteraction
Po name = "Dispatch”

sighature selector UX
: .

Q<mm_)<’5 a5V

Figure 3.24: Dispatch

) . .
Frame [§ - Zfiters =~ - FilterFrame - - st duxSlot)
! .
1l 1 1 1 :
E filtering : ne A
abort— - h 4 .

Filteraction i
narme = "Errar” V

Figure 3.25: Error

well. Therefore we currently do not support this type in our semantics. A more
detailed discussion about incorporating Meta filters is given in Section [3.8

Dispatch

Figure [3:24] shows the rule for Dispatch action. It shows the FilterFrame with a
pc edge to a FilterAction with name “dispatch”. The target and selector of
the MethodFrame being filtered are replaced by the values set at the FilterFrame.
The FilterFrame is deleted — along with all AuxSlot nodes — and the state of
the MethodFrame is updated to dispatch. In word, the action results in the
(optionally altered) message being dispatched to the (optionally new) target.

Error
The rule for the Error action is shown in Figure [3:25] Again the FilterFrame and

associated AuxSlot nodes are deleted. The state of the method frame is updated
to error, indicating the occurrence of an exception.

Substitute

Figure [3:26 shows the rule for the Substitute action. The target and selector of
the MethodFrame being filtered are replaced by the values set at the FilterFrame,

3.7. Runtime Semantics 79

l
target
!

filters: FilterFrame | _ _ o Filterdction

name = "Substitute"
! T
|

I .
' signature Fliow
I selector pc

name
'=---1Signature name%@ filowEetnent

Figure 3.26: Substitute

FilterFrame | - - - pe- - 2 FilterAction
harne = "Continug"
T
flows
p FlowElement

Figure 3.27: Continue

target

where they are deleted. The program counter is increased.

Continue

The rule specifying the Continue action is shown in Figure [3.27 This rule simply
increases the program counter.

3.7.2 The Substitution Part

The SubstPart part is an argument for the accept action of a Filter. Its evaluation
consists of two parts, namely evaluation of the target argument and evaluation of
the selector argument.

The rules for evaluation of the target are shown in Figure[3.28 Figure [3.28a]shows
the rule that is used for evaluating the “*” argument and results in a target edge
to the target of the filtered MethodFrame. Figure shows the rule that is
used for any target other then “*”. In resolves to the object stored in the VarSlot
of the Var with the selected name connected to the self object. Notice that the
program counter is not increased. To make sure the rules for target evaluation are
applied first, these are given a higher priority (as a property that can be given to
the rule in GROOVE).

The rules for evaluation of the selector are shown in Figure Again, two rules
are needed. Figure shows the rule that evaluates a “*” selector; the results

80 Chapter 3. An Execution Semantics for Composition Filters

target = "*"

filters po—] SubstPart

target target target

:uqumg
HInnns

(a) SubstPartTargetStar

Filterhtodule varat_@

{filter matchingPattern. substitutionPart} name

SubstPart ta'QEtié / wvalue
[~

q

ndl
RS @(—n'l
g ,J_‘ 3
;llll:(" targ Frarne target: Object

(b) SubstPartTargetOther

Figure 3.28: SubstPart Target Evaluation

is a selector edge from the FilterFrame to the currect selector, i.e. the name of
the Signature connected to the filtered MethodFrame. Figure [3.:295| shows the rule
for evaluating any selector other then “*” and results in a selector edge to the
specified value. During program counter is increased during selector evaluation.

3.7.3 Filter Matching

The only thing left to specify is the matching of a filter specification with a mes-
sage. We enumerate the rules required for this process:

The following points are noteworthy:

e The CondExpr evaluation (Figure [3.30)) is done by assuming and assigning
either a true or a false value, non-deterministically; both rules are applicable
in the same graphs.

e The NameMatch evaluation is shown in Figure [3.31] The specified selector
is compared with the name of the signature of the filtered Frame. The value
of the NameMatch is set to the result of the eq string operation.

e The SigMatch evaluation (Figure [3.32) is done by assuming and assigning
either a true or a false value, non-deterministically; both rules are applicable
in the same graphs.

3.7. Runtime Semantics

e 1 FlowElement

flow

1
Frame [~ """ pG--=-- » SubstPart
zelector =

e

target zelector

Object filters
harme

(a) SubstPartSelectorStar

selectar

Frame t """ po----- selector
target
fl nd
Object e
pc ";.1 FlowElement @(—n‘l

&

Figure 3.29: SubstPart Selector Evaluation

(b) SubstPartSelectorOther

winFalse o T e
------- pC------ CondExprpv |FTAMEF-----m- po------ CondExpr |1
EIH) at =H ’at
AuxSlot flow AupxSlot flowe
value = true value = false
po FlowElement po FlowElement
(a) CondExprTrue (b) CondExprFalse

Figure 3.30: CondExpr Evaluation

81

82 Chapter 3. An Execution Semantics for Composition Filters

po FlowElernent
flow
IE”EK --------- po---------- Marmehdatch
AL, al
selectar
AupxSlot
filters value

nd
B,
nl

h

(a) NameMatch

Figure 3.31: NameMatch Evaluation

"""" pe------F Sighaten | [PERE oo pc------

EIH) At A ’at
AuxSlot flow Aot o
walue = frue value = false
FlowElement po FlowElement
a) SigMatchTrue (b) SigMatchFalse

Figure 3.32: SigMatch Evaluation

pc \;] FlowElament

flow
[Frame oz ------------- PC--mmmm oo] histchMEG

AL, at
AuxSlat

walug

aur p_ng+ :*O expr

value

AuSlat at M hiatchExpr
(a) MatchNEG
Figure 3.33: MatchNEG Evaluation

3.7. Runtime Semantics

-
pC FlowElement

flow

Frame| _____ po----- 3 IFIIEICOR| bMatch COR)
Y At
au AuxSlot left
i value = frue
Aot at * FlowElement
value = frue
(a) CORLeft
fales . FlowElement
flows
IEE'EI{———-DC ————————— {tatchCOR|FIEICOR}
=

at

,Otvalue

AuxSlot at * FlowElerment

value

(b) CORRight
Figure 3.34: MatchCOR and FilEICOR Evaluation

S
pe »{ FlowElement pe FlowElement

flow flows

Frame [_________ po----m- - FilterElernent| MM R---------po-------- FilterElerment
Al at at
AuxSlot
L value = false ‘value
AuxSlot at: #* CondEsxpr vale
value = falze AuxSlot at ™ b atchExpr
(a) FilterElementLeft (b) FilterElementRight

Figure 3.35: FilterElement Evaluation

83

84

Chapter 3. An Execution Semantics for Composition Filters

P FlowElement

flow

| Frame |' -----)| {Flaw|Filter} |—branch)| BEranch |
brancth |
aux condition
value
AuxSlot # FlowElement
(a) Flow

Figure 3.36: FlowElement Evaluation

e The MatchNEG (Figure|3.33)) simply negates the result of evaluating the expr

node.

The MatchCOR and FilEICOR are evaluated using the same rules. The rules
in Figure [3.34] shows the two possible scenario’s for evaluation. In Figure
the scenario is matched where the left argument has evaluated to true
and the right argument has been skipped; the COR evaluates to true also.
The other scenario, where the left argument evaluates to false is matched
by the rule in Figure where the right argument is evaluated; the COR
evaluates to the result of the right argument of the COR.

The FilterElement evaluation is specified in Figure [3.35] The rules model an
and operation; when the cexpr evaluates to false, the FilterElement is also
evaluates to false; this is shown in Figure Otherwise, the mexpr is
evaluated, and the FilterElement evaluates to the result of the mexpr; this is

shown in Figure [3.350]

The branching that is required when the program counter is at an auxiliary
Flow node or at the Filter node, is performed by the rule in Figure [3.36] The
branch is selected that has a branchOn edge to the value of the expression
that is selected as a condition; the program counter is updated to the flow
target of this branch.

3.8 Evalution

In this section, we evaluate a number of important properties, such as the require-
ments presented in Section[3.3] but also some general properties of semantics, such
as correctness and completeness.

3.8. Evalution 85

Correctness

The semantics presented in this chapter is defined according to a description in
natural language of the intended behaviour of the language. We therefore do
not show any proof that our semantics is correct, as it is specified according to
our interpretation of this description. However, as far as possible, the semantics
has shown to be consistent with the executed behaviour of the current run-time
implementation of Composition Filters.

Filter actions may be specified with a certain level of abstraction; the result of
the actions is encoded in the scope of the message. This means that only the
effect of the actions on the message is specified. For the default filter types, this
is the correct behaviour. However, custom filter types may cause side-effects that
require abstract modelling of the effect. Examples of such abstractions can be
found in Chapter

Completeness

The semantics is complete w.r.t. the filtering mechanism of Composition Filters.
However, the base system may be represented in an abstract way, so that the
filters are evaluated for any context and any message. We explain this in more
detail in Chapter

Certain parts of the Composition Filters have been omitted. First, only input-
filters are handled. However, most CF specifications only use inputfilters. Also,
extending the semantics for outputfilters is a trivial task, since such filters are eval-
uated similar to inputfilters. Second, only the default filter types are included, and
the meta filter type has been omitted. Extending the semantics for custom filter
types is discussed in the next paragraph; extending the semantics for the meta
filter type is discussed in our discussion of future work in Section [3.9

Understandability & Extensibility

We believe that graphs are a natural way to model software. Also, once familiar
with the notation of graph transformation rules, the results of applying such a
rule are understood from these specifications easily.

In extending the semantics for custom filter types, each new filter action only
requires a single rule to be specified, that specifies the existence and incrementing
of a program counter, and the effect of the action on the message. Taking the rules
for filter actions in this work as example should make extending the semantics a
fairly simple task.

86 Chapter 3. An Execution Semantics for Composition Filters

Verification and Analysis

As part of our requirements, we have said that the semantics must be a solution to
being able to analyse and verify Composition Filters specification. We think this
goal is satisfied. The semantics allows us to generate a state space representing
the filtering mechanism of any message sent to an instance of a certain class in
any context. The nature of the semantics — a small-step semantics — exposes all
the steps of the execution. This can for instance be useful for model checking the
System.

The graph-based nature of the semantics has another advantage. In representing
run-time states as graphs, we are able to compare states by using an isomorphism
comparison. This test is integrated into the simulator tool and takes care of
representing isomorphic graph as identical states in the state space. In Chapter
we show how this can be used to detect interference between filter modules.

Base-System Abstraction

In defining an execution semantics for Composition Filters, the design of Compo-
sition Filters makes it possible to abstract from base-system details. In fact, part
of a Composition Filters specification provides the interface (i.e. an abstraction)
with the base-system. We have encountered these in the specifications of condition
expressions and signature matching.

We deal with the base-system by evaluating any predicates on the base-system in a
non-deterministic way, i.e. by assuming that a condition expression or a signature
match can be evaluated to true or false. This is handled by two rules for each
situation that can be applied in a state where the value of the predicate is yet to be
determined, and applying these rules results in two states where the predicate is
set to either true or false. In fact, the state space then represents the execution of
the filter module in any base-system, where each trace in the state space represents
the execution of the filter module in a set of concrete base-systems.

3.9 Conclusions

3.9.1 Related Work on AOP Semantics

The basic idea of using graph transformations for operational semantics is far
from new: it ranges from a term graph-based semantics for functional languages
(see Plump [Plu99]) to graph-based semantics for actor languages (see Janssens
[Jan99]) and visual languages (e.g., [Hau06]). For object-oriented languages the

3.9. Conclusions 87

first approach of this kind is by Corradini et al. [CDFRO04]; the approach of this
paper is inspired by [KKROG].

There are quite a few works describing a specification of an aspect-oriented op-
erational semantics. Most of these approaches focus on — like this work — a
simplified base language and aspect extension. In general, they focus on a certain
feature of aspect-oriented languages. The works all use a textual, mathemati-
cal notation, whereas our notation is of a more intuitive visual kind. The works
mentioned also do not provide a means for execution, whereas our work can be di-
rectly be used to visually represent the execution of a specific Composition Filters
specifications. We now enumerate the most relevant work.

Djoko Djoko et al. [DDE0S]| presents the Common Aspect Semantics Base (CASB),
which consists of an SOS semantics of two base languages — a simple functional

language and AFJ — and a number of aspect-oriented programming language
features. The work in Chapter [4]is based on the CASB.

Lammel [Lam02] presents an operational semantics for an imperative object-
oriented language with join-points for method calls. The goal of this work is to
formally define the semantics of a single AOP feature and proof certain (safety and
liveness) properties of the modelled language feature, whereas — in our work — we
focus on verifying properties of programs specified in the language. Kiczales et al.
[KDO02] give a denotational semantics for a first-order procedural language with
join-points for procedure-call, procedure execution, and advice execution. The
work is intended to serve as a reference semantics for against which correctness
results may be measured. Jagadeesan et al. [JJR03] give a calculus of untyped
aspect-oriented programs. Their specification is class-based, and models multi-
threaded programs. They also define formally define a weaving algorithm. The
purpose of the work is to verify properties (correctness) of the weaving algorithm.
Opposite to our work, no properties of the language or instances of the language
are verified. Walker et al. [WZLO03] present a core aspect-oriented calculus for a
simple, idealised aspect language based on the simple-types lambda calculus. The
goal of this work is to provide means for (largely) language independent studying
of aspects. No claims are made of the properties that may be verified. Instead,
the focus is on defining a semantics for a concrete language using the given core
calculus. Bruns et al. [BJJTR04] present a formal model for aspects in a functional
language. The purpose of this work is to provide a different view on aspects, where
aspects are the only computational entities. The semantics can serve as a “meta-
language”, but is mainly used to study the theory of aspects in general. Clifton
et al. [CLO5] provides a calculus for an imperative object-oriented language with
advice bindings and proceed. The contribution of the work is to give a semantics
of proceed that allows changing the target object, which in fact is also possible
using Composition Filters. In general, the semantics is used to study properties
of proceed.

88 Chapter 3. An Execution Semantics for Composition Filters

3.9.2 Future Work: Possible Extensions

Currently we have not included the Meta filter type in our semantics. To be able
to include simulation of the ACT method, we also require an execution semantics
of the base-language. However, a simplified version of the Meta filter behaviour
may already be useful. We could for example extract the changes that are made
to the message and the reactivation kind that is used on the message by the ACT.
Other side-effects, such as outgoing method-calls and changes to variables in the
ACT itself are ignored. With this approach, we could still analyse the control
properties of the message filtering process, including Meta filters.

Another possible extension is to make simulation more concrete for a specific base
system. Regarding signature matches, this is done by simply adding the signatures
of all classes that are used in the filter modules to the abstract syntax graph;
signature matches can then be matched against the signatures of the specified
object. This gives a more concrete simulation of the base-system at hand.

It is also possible to have less impossible run-time state represented in the state-
space. For example, let us assume a filter module with two conditions a and b.
For the condition expressions a&&b, and a, not all possible combinations of true
and false are possible. For example, if a is false, a&&b cannot be true. This
can be done by representing declared conditions in the abstract syntax graph and
evaluate these to true and false; the condition expressions using these conditions
can then be evaluated accordingly. In doing this, less traces that cannot exist are
created.

As we have mentioned, the semantics currently only supports inputfilters. Without
much effort, the semantics can be extended to also support outputfilters. This may
give rise to the simulation of longer filter module sequences, whereas a message
being sent from an object with output filters may be sent to an object with input
filters.

3.9.3 Contributions

This chapter describes an execution semantics for the Composition Filters model.
We employ a graph-transformation-based formalism to specify the semantics. This
involves giving a control-flow semantics and a run-time semantics of the aspect
language, and a run-time semantics for the actions performed by filter modules to
manipulate the base language by means of method-call interceptions

The formal semantics can help in understanding the language, as well as pro-
viding a means for investigating new language features. Also, by using graph-
transformations as our specification language, we can directly execute this seman-
tics given a program represented a a graph. Specifically for Composition Filters

3.9. Conclusions 89

this means that we can simulate the result of a Composition Filters specification
on the base-system state. The result of this — a state space represented as a
labelled transition system — can be used for existing verification techniques for
program specifications, such as model checking.

Defining a control flow semantics has learned us that the control flow of Com-
position Filters is not very straight-forward. In fact, the abstract syntax model
for filter modules that we use in this chapter is an enhancement of the current
language model; it can therefore be used as an improvement for the language.

In Chapter [5| we illustrate simulation of a program using the semantics and using
the semantics for verification.

Chapter 4

Specification and Simulation of
Featherweight AspectJ

4.1 Introduction

In this thesis we want to investigate formal techniques for aspect-oriented lan-
guages, i.e. to verify whether all possible system executions are correct with
respect to its specification. We do this by first defining the semantics of the lan-
guage at hand as an operational semantics. With such semantics, the maning of
a program is represented as a sequence of computation steps that result from the
program’s execution.

In this chapter we present an operational semantics for Assignment Featherweight
Java (AFJ), which is an extension to Featherweight Java (FJ), a minimal subset of
Java. This simple language - although not suitable for industrial implementations
- is often used for studying the consequences of language extensions. We study
part of this language, namely around advice, which can — combined with a proceed
statement — be used to represent before and after advice.

The semantics of the language and the extension are taken from a work called
the Common Aspect Semantics Base (CASB) [DDF08]. The CASB is a reference
model for the runtime semantics of aspect-oriented programming languages. This
work presents a structural operational semantics (SOS) for the language at hand
(AFJ with an aspectual extension).

91

92 Chapter 4. Specification and Simulation of Featherweight AspectJ

The specification method in this thesis is graph transformation. In this chap-
ter, we demonstrate the advantages of a graph-transformation based operational
semantics over traditional, mostly textual notations:

e Specifying of a semantics can be a complicated task; mistakes are easily
made. The directly executable nature of graph transformation increases
ease and confidence of specification of a semantics by giving the user a way
to test it without having to write a interpreter first(which may contain errors
either copied from the semantics or made during implementation).

e By giving the semantics in this way, the road is opened towards applying
existing verification methods, such as the work we present in Chapter
Also, the labelled transition system (LTS) (resulting from executing the
semantics) lends itself directly for model checking (see [KRO06]).

e We believe that the visual nature of the graph transformation rules will
appeal to many readers that are not experts in mathematics. This benefits
the understanding of a language based on the given semantics.

To increase confidence in the correctness of our definitions, we show that they
coincide with the formal specification of the AFJ language in the CASB.

In the next section we will explain details of Assignment Featherweight Java with
around advice. In Section [4:3] the graphs are described that represent AFJ pro-
grams with advice. In Section [I.4] we provide a detailed description of the graph
transformation based semantics of chosen language. In Section we discuss the
reference semantics and show that our semantics is correct with respect to the
reference semantics. Section [£.6] shows some example programs and illustrates the
result of simulation. Finally, in Section [.8] we discuss related work, future work,
and the contributions of the work presented in this chapter.

4.2 Assignment Featherweight Java with Around Advice

In this section, we describe the syntax and run-time of the Featherweight AspectJ
language.

4.2.1 The Featherweight AspectJ Language

Featherweight Java (FJ) [[PW99] is a subset of Java that contains only five forms of
expression: object creation, method invocation, field access, casting, and variables.
The language has no branching (i.e. conditional statements).

4.2.

Assignment Featherweight Java (AFJ) [MP05] has extended this language with

Assignment Featherweight Java with Around Advice

Prog :=L;e; A
L ::=class T extends T {T f; M}
M =T m(T x){e;}
ex=zx | ef | em(e) | newT(€)
lef=e| (T)e
A =T around(Tx) : P {€'}
P = call(T*.m*(T*))

¢ :=e | e.proceed(e)
T =T | * | T+
m*u=m | *

Figure 4.1: Grammar of Featherweight AspectJ.

93

mutable field variables to bring it closer to the way Java programs are usually
written. The minimal syntax and operational semantics make it a handy language
for conceptual studies on the implications of language extensions. This makes

the language useful for trying AOP language features.

We actually study an

extension of the AFJ language with around advice. In this thesis, we will refer
to the extended language as Featherweight AspectJ (FAJ). The grammar of FAJ
is shown in Figure Throughout the chapter we use the overbar notation for
vectors.

e A program Prog consists of a vector of classes L, a main expression e, and

a set of advice declarations A.

e A class L consists of a list of field names and types T, and a list of methods

M.

e A method consists of a return type, an identifier, a list of arguments Tz,

and a method body, which is an expression.

e Expressions can be (from left to right) variables (e.g. a method parame-
ters), fields accesses, method invocations with a sequence of expressions as
arguments, object creations with a sequence of expressions as parameters,
castings, assignments, and proceed expressions (see below). Object creation
is not handled by an explicit constructor. Instead, the ordered list of argu-

ments is assigned to the ordered list of fields.

94 Chapter 4. Specification and Simulation of Featherweight AspectJ

e Aspects (A) are represented as (global) declarations of an around advice
and a point-cut. Advices are methods with a method body €', that can
optionally contain a proceed expression. As usual, we can use this also to
mimic before and after advice, by adding a PROCEED instruction after or
before the instructions of the advice, respectively.

e An advice declaration is combined with a point-cut declaration P that selects
certain expressions. In this language we have limited the point-cut language
to selection of method calls.

e A point-cut is specified as a call to a certain receiver type T, which can be
a concrete type, a wild-card, or T+, selecting a type and all its sub-types.
The same is used for the parameters of the call.

e The method identifier can be either a concrete method identifier or a wild-
card selecting any identifier.

An example FAJ program — used throughout this chapter — is shown in Figure
It defines a class Exam, with a field Nat grade and a method Nat setGrade(Nat)
to update the grade. The class NamedExam represents an exam where the student
has filled in his name. The classes Nat, Zero and Succ represent the natural
numbers; every natural number can be represented as a sequence of successors of
zero. Nat defines the method Nat add(Nat) and Nat dec(), which return the sum
of itself and the argument, and its value decreased by one, respectively. Since FAJ
does not allow interfaces, abstract classes, or empty method bodies, the methods
in Nat define the correct implementation for Zero, which is a sub-class of Nat.
Note that the decrement of Zero is Zero, since -1 is not a natural number. The
implementation for successors is defined in the Succ class. Two main expressions
are specified (one commented) that represent the different cases we demonstrate in
this paper. In the first, the exam is awarded a five; in the second a zero. After the
main expression, two around advices are declared. The first specifies that, when a
person filled in his name on the exam, he or she is awarded one extra point. Notice
that the signature of the advice method contains the parameters of the intercepted
method plus the type of the receiver. Also, proceed is syntactically designed as a
method-call on the receiver object, with the signature of the intercepted method-
call. The second advice describes a situation where the average score is too high
and has caused a norm change: every exam is awarded one point less. When
setGrade is called on an instance of NamedExam, both advices are triggered. This
enables two interesting scenarios, caused by the initial grade (the argument of
setGrade), and the order in which the advice are executed. When a person is
awarded a grade greater than zero, the grade can be increased and decreased or
decreased and increased, resulting in the same final grade. However, when a person
is awarded a zero, if his grade is increased first and then decreased, the result is
still zero; if the grade is decreased first and then increased, the final grade will

16

19

36
37
38
39
40

4.2. Assignment Featherweight Java with Around Advice

95

class Exam extends Object {
Nat grade;
Nat setGrade(Nat n) { this.grade = n; }

}

class NamedExam extends Object {
String name;
}

class Nat extends Object {
// default implementation
Nat add(Nat n) { n }
Nat dec() { this }

class Zero extends Nat {
// zero can wuse default implementation

class Succ extends Nat {
Nat pred
Nat add(Nat n) { new Succ(pred.add(n)); }
Nat dec() { this.pred; }

}

// scenario 1:

new NamedExam(new Zero ()).setGrade(new Succ(new Succ(new Succ(
new Succ(new Succ(new Zero())))));)

// scenario 2:

// new NamedEzam(new Zero()).setGrade (new Zero())

// advice 1: extra point for filling in your name
Nat around(Nat n, NamedExam receiver)
call (NamedExam.setGrade (Nat)) {
receiver .proceed (new Succ(n));

}

// advice 2: norm change
Nat around(Nat n, Exam receiver)
call (Exam+.setGrade (Nat)) {
receiver .proceed(n.dec());

Figure 4.2: Source code of the example FAJ program.

96 Chapter 4. Specification and Simulation of Featherweight AspectJ

meode(id,) = S(mbody(id,r)); RETURN

S(x) = VAR,
S(e.f) = S(e); GETy
S(eo.f =e) = S(e); S(eo); SET
S(NEW T'(eg, ..., en)) = S(eg);...;S(en); NEW
S(e.m(eg,...,en)) = S(eo);...;S(en); S(e); CALL,,
S(e.PROCEED(eg, . .., €,)) = S(eg);. .. ; S(en); S(e); PROCEED

Figure 4.3: Sequentialisation

be a one. In Section we will show that we can automatically visualise such
differences.

4.2.2 Run-time Semantics

Next, we explain the run-time semantics defined in this chapter, which is a slight
adaptation of the semantics defined in the CASB. Since in this work we concentrate
on run-time semantics, we have decided to ignore issues of static semantics, such
as typing. Therefore, type casting and method overloading are not treated in our
semantics.

The run-time semantics of this language is specified in terms of sequences of in-
structions. That is, every expression in the grammar can be sequentialised into
a sequence of stack-based instructions of the types: CALL, RETURN, NEW, VAR,
GET, SET, and PROCEED. In our semantics, we assume that expressions are pre-
evaluated into such sequences; whenever we represent an FAJ program, method-
bodies consist of a sequence of instructions instead of an expression. We define
the sequentialisation process as a function mcode : Id x T — Instr (Fig. |4.3)
that turns a method identifier into a sequence of instructions. It uses the func-
tion mbody : Id x T'— Expr (as defined in the reference semantics), that finds
the body expression for a method identifier and a receiver type. This is defined
as follows: Thus, the mcode function will use the given identifier and type to the
mbody function, which looks up the method and returns the body expression. This
expression is broken down into a sequence of instructions by function S. Finally,
a RETURN instruction is added.

Run-time information is stored in both a heap and a number of global stacks:

4.3. Graph-Based States 97

e A so-called continuation stack contains the currently scheduled instructions,
the top instruction being the first to be executed. Execution terminates
when the continuation stack is empty.

e The results of evaluating an expression are placed on a so-called value stack.
For executing around advice, the following concepts are required:

e a proceed stack is used for postponing an action that triggers an advice;
PROCEED instructions pop the top of the proceed stack onto the continuation
stack;

Furthermore, a number of auxiliary instructions will be used:

e a DO instruction is used for invoking advice;

e a PUSHP instruction pushes the top of the continuation stack on top of the
proceed stack;

e a POPP instruction pops the top of the proceed stack;

When a CALL instruction is matched by any aspects, these aspects are first sched-
uled (in a certain order) by placing a DO instruction on either the continuation
stack (for the first advice), or the proceed stack (for any other advice). The PUSHP
and POPP instructions are added to achieve a uniform handling of multiple around
advice, all of which may contain a PROCEED instruction.

4.3 Graph-Based States

In this section we explain the graph representation of FAJ states. For this, we
use so-called meta-graphs (e.g. Fig. , which show the nodes used in the
actual graphs (with a label), and all the edges that may be used to connect these
nodes. The meta-graph does not give a multiplicity restriction. An ordinary graph
conforms to this meta-graph when:

e each node in the ordinary graph can be mapped on a node in the meta-graph,
which is possible when both nodes have the same label,

e for each edge in the ordinary graph, there must exist an equally labelled
edge between the images in the meta-graph of the source and target node of
that edge.

98 Chapter 4. Specification and Simulation of Featherweight AspectJ

Figure 4.4: Meta-Graph of the Base Language Static Structure

We assume that some translator generates a graph for a given program given by
Prog in the grammar described above. This graph contains the static structure
of the base-program L, static structure of point-cuts and advice A, and some
representation of run-time information, which is initialised by the main expression

e on the continuation stack. We describe these parts one by one.

4.3.1 AFJ Program Graph

The static structure of the AFJ-part of the program (the base) is represented by
a graph conforming to the type-graph shown in Figure [£.:4] Most of it should be
self-explanatory. Classes have fields and methods. Methods have parameters and
a method body. A method body has a list of instructions. Classes, fields, methods,
and parameters have names. Fields, parameters, and instructions are ordered in
a list by next-edges. The last element of a list is an EoL node. List elements
and EoL nodes can be either for fields (FLE,EoFL), parameters (PLE,EoPL) and
instructions (ILE, EolL).

The main expression — not in this figure — is on the continuation stack, which is
described shortly. Since type-checking is neglected, return types, field types, and
parameter types are not used and therefore not represented in the graph.

4.3. Graph-Based States 99

Figure 4.5: Meta-Graph of the Aspectual Static Structure

4.3.2 Aspect Program Graph

Advice is represented conforming to the meta-graph shown in Figure Advice
is modelled as a method, inheriting all options of regular methods. However, the
body of an advice can contain a PROCEED instructions, where regular methods
cannot. Point-cuts are connected to all instructions they match. A point-cut is
associated with an advice through a DO instruction, which is used to invoke the
advice.

4.3.3 Run-time Graph

Run-time information is represented conforming to the heap and stack meta-graph,
which is shown in Figure [4.6] The heap is represented as Object-labelled nodes
in the graph. Objects are connected to Class-labelled nodes representing their
types. The values of the fields of an Object are stored in Var nodes. The values
themselves are again Objects.

For method execution, a Scope node represents the scope of the method execution.
Each variable in this scope (e.g. the value of parameters, and this) are connected
to this scope. Instructions of the method body are also connected to the scope
when they are pushed on the continuation stack, such that a VAR instruction can
find the correct value.

Execution is modelled as interpretation of instructions on the continuation stack,
and using values from a value stack. Therefore, most rules of the semantics de-
scribed in this paper perform one or more pop or push operations. Stacks consist
of a sequence of cells, the top one directly linked to the stack itself. Cells can
contain either instructions or objects. A cell can be tagged, meaning that if this
cell contains an instruction, this instruction cannot trigger an advice. Stacks are
named as follows: C represents the continuation stack, S the value stack, P the
proceed stack. (The names of the stacks are not in the meta-graph, they are
instantiations of the node-type Stack).

100 Chapter 4. Specification and Simulation of Featherweight AspectJ

init
MethodBod current
'ef

selected
id
type
ldentifier

wal : Object

wvar
War
top value__|name

Figure 4.6: Meta-graph of run-time information.

War

Some auxiliary nodes can be created during execution that trigger and store in-
formation for certain sub-routines. For example, the Mbody is used for method
lookup, and the Pushcode node is used for pushing the instructions of a method
body on the continuation stack. Auxiliary instructions PUSHP and POPP can be
created during advice execution.

4.4 Language Semantics

Given the graph-based representation of the system state as presented in the
previous section, we can now give an operational semantics of the language, by
specifying one or more rules for each instruction. Most rules match a certain
instruction on top of the continuation stack. Other rules are used for executing
sub-routines, e.g. method-lookup.

For the specification of such internal sub-routines, we choose priorities to help
keep the specifications simple. A rule with a certain priority can only be applied
when no rule with a higher priority matches. We will use three different priorities.
The rules that match base-language instructions have the lowest priority (priority
0). To allow these rules to remove the instruction from the stack, but have sub-
routines continue before the next instruction is matched, all base language sub-
routine rules have priority 2, i.e. the next instruction continuation stack is matched
no sooner than when all sub-routines for the previous instruction have finished.
Rules for handling advice have priority 1: they have precedence over base program
instructions, but do not interfere with sub-routines.

4.4. Language Semantics 101

— C -get Kvalue -Ce | top=— 5
Stack Stack

;
B

nexk

\
i i
: valug !
top lv_alue narme ;
[!
Y. Cell :

b . g top
P Cell hame N .
[. 1
A . |
rexk war next\ |

Figure 4.7: Rule for the GET instruction

4.4.1 AFJ semantics

There are rules for each of the instructions discussed above. We describe these
rules one by one.

The get Instruction

Figure [£.7] shows the graph production rule for the GET instruction. In Fig.
we have shown that this instruction originates from an expression of the kind e.f.
The rule applies when the GET instruction is on the continuation stack and the
result of receiver object e is on the value stack; it is processed before the GET
instruction. A Var node connected to the receiver object is selected, that has the
same name as the name argument of the GET instruction. The receiver object is
popped from the value stack, and the value of the selected Var node is pushed on
the value stack.

The set Instruction

Figure shows the rule for the SET instruction, which originates from an ex-
pression of the kind e.f = eg. The rule applies when a SET instruction is popped
from the continuation stack. The receiver object e and the new value ey are on
the value stack. The variable to be updated is selected, that has the same name as
the name argument of the SET instruction. The value of the variable is replaced,
and the receiver is popped from the value stack. The new value remains on the
value stack, since it is also the result of e.f = eq.

Y U s W N =

-3

(o]

¢
10
11
12
13

NeJ

102 Chapter 4. Specification and Simulation of Featherweight AspectJ

walue

_c Instr -O bject 3
Stack ! Stack
var

! -
top walue name

¥_- R 4
o el Identifier [#-name (el
il - L

i -
! walug néxt
st
\
\
i

_\.-'alue’ !

Figure 4.8: Rule for the SET instruction

// phase 1: call

call;

// phase 2: method body lookup

until (call.mbody_match) do {
call_mbody_up

}

// phase 3: parameter initialisation
alap { call_initparam }
// phase 4: pushing body on the continuation stack
call_pushcode_start ;
until (call_pushcode_end) do {
call_pushcode
}

Figure 4.9: The method-call sub-routine.

The call Instruction

This CALL instruction requires some more work to be done. First, a method-body
lookup has to be performed. Second, arguments (that are already on the value
stack) have to be transferred to local variables. Third, the instructions of the
method-body have to be pushed on top of the continuation stack. To be able
to model this, we need to apply a sequence of rules. The entire process of the
CALL instruction is described in Figure using the control language introduced
in Chapter (The control program is not actually part of the semantics; as
mentioned above, we use priorities to control rule applications).

The process is divided into four phases. We describe these phases one at a time.
The rules for this process are shown in Figure and Figure

4.4. Language Semantics

5
hext ! Cell Ptop— gy ok

i
!
b
R , value
\

Y
C] | Instr
Stack [tope _): E}ia!:——-value L‘r'Pe
ﬁe rAbady

) call
=1
Cl
* method Stack
i .
ref tép
. —1
. Mbodyl next)? valug 53;!‘.
i::l it value ne:-:t

extends ; name Feope
. o]

(b) mbody_up (c) mbody-match
| -— ICell F(--top---g
A ' - . 'y Stack
init
walue value

i
?
it hame =
i
I
'
et
name Identifier Cell HOp et

(d) call_initparam

'
]
'

I
'
'
]

Figure 4.10: The rules for the CALL instruction phases 1-3.

103

104

Chapter 4. Specification and Simulation of Featherweight AspectJ

scope—)l Scope *src—l puzhcode I .-|;L;s_h_c;ae_'

1
|n|t '

biody curent current

MethodBady Iast—)-(—next—% MethodBody

(a) call_pushcode_start
call pushcode_end

puzhcode
S [pusheode |

i
cLment

Stack I

!
i \ i
| curment

!
' (=3
i

! FCOPE

ek
Cell Cell wallie

(c) call_pushcode

Figure 4.11: Rules for the CALL instruction phase 4.

Phase 1: A CALL instruction is popped from the continuation stack. The
method lookup process is started by creating an Mbody node that refers to
the type of the receiver object on top of the value stack, and the identifier
of the method that is called.

Phase 2: The Mbody node is used to search upwards in the class hierarchy for
a method with an identifier that matches the associated identifier. When the
method is found, a scope is created to contain the variables for the method
parameters, and the this variable is created with the receiver as value, which
is popped from the value stack. An init edge is created connecting the
scope to the first parameter that is to be initialised.

Phase 3: As long as the scope has an init edge to a Parameter, a value is
popped from the value stack and a variable is created storing the value for
the parameter. The parameters are initialised in backwards order, consistent
with the order of the arguments on the value stack.

Phase 4: (Figure When all parameters have been initialised, a push-
code process is created for pushing the method body on the continuation
stack. Each time an instruction is pushed, the current edge of the pushcode
node is updated to the next instruction. The instructions are pushed in re-
verse order (i.e. starting with the RETURN instruction) so that — when
finished — the first instruction will be on top of the continuation stack.

4.4. Language Semantics 105

C Lo top-dm Cell - - -value- M new] type
el

id name next init

Cellfp------- nest

Figure 4.12: The new rule.

om

Stack

- - value Ohject M€ value -:E:;U:(top
\

L Sl 1
it it harne riest

[nam Call top

Figure 4.13: The new_initfield rule.

ax)

Stack

value o —]

init hest top” .

Figure 4.14: The new_end rule.

The new Instruction

As mentioned before, a class has no explicit constructor. Instead, when a NEW
instruction is executed, the initial values of the class’ fields are on the evaluation
stack and will be assigned to the corresponding variables of the newly created
object. When the execution of the NEW instruction is finished, the created object
is placed on top of the continuation stack. The rules for the NEW instruction are
executed consistent with the following control expression:

l‘new; alap{new_initfield }; new_end

Figure .12 shows the rule that matches the NEW instruction on top of the contin-
uation stack. It creates a new Object with a type edge to the class and an init
edge to the first Field of the class, or EoL (the end of the list). The init edge is
a trigger for the rule for field initialisation.

106 Chapter 4. Specification and Simulation of Featherweight AspectJ

Stack

I Sclope at

Figure 4.15: The return rule.

Figure shows the rule for the initialisation of a field. It matches when an
Object node has an init edge to a Field node. A Var node is created and a
value is taken from the evaluation stack. The Var node is connected to its parent
object and the name of the field. The init edge is redirected to the next Field (or
EoL).

Figure shows the end of the field initialisation init process. This rule is
matched when the init edge is targeting EoL and removes that edge. The new
object is pushed on the continuation stack.

The return Instruction

As defined by the sequentialisation function in Figure [4.3] every method body
ends with a RETURN instruction. It cleans up the scope after method-execution.
The corresponding graph production rule is shown in Figure[£.15] The Scope that
was created during execution of the CALL instruction is deleted.

The var Instruction

Figure [4.16) shows the rule for the VAR instruction, which is the usage of a method
argument. When the VAR instruction referring to a variable name is on top of the
continuation stack, the rule will match the Var node in its scope that has that
same name. The resulting value is pushed on the evaluation stack.

4.4.2 FAJ Semantics
Triggering advice

When an instruction is on top of the continuation stack and is matched by one or
more point-cuts, the associated advices are scheduled by pushing the DO instruc-
tions (linking the point-cuts with the advices) on (i) the continuation stack, if the
advice is scheduled first; (ii) the proceed stack, if the advice is scheduled after the

4.4. Language Semantics 107

FCOPE g
c L -~ top- <3 oo - - value Instr Yar —value3 Object = valuz Cell b — 5
Ctack op): E:;!Jr var - - - Stack
A T
' '
st name "Name tép
!
\
tap Cell Identifier (=2 Cell

Figure 4.16: The var rule.

first advice. The original instruction is popped from the continuation stack and
pushed on the proceed stack.

The around rule in Fig. [f.17a]takes care of scheduling the first advice that is sched-
uled and creates a join point instance. This instance is used to trigger matching
any subsequent advices that, instead of matching an instruction on the contin-
uation stack, match an instruction on the proceed stack referred to by this join
point. Matching these subsequent advices is done by a different rule.

The do instruction

The DO instruction in Fig. invokes the advice, in the same manner as is
done by a CALL instruction; a scope instance is created, that will trigger rules for
parameter initialisation and pushing the body on top of the continuation stack.

The proceed instruction

The PROCEED instruction in Fig. pushes the top of the proceed stack back
on the continuation stack. To not have this instruction trigger advice again, the
cell containing the instruction was tagged already when the advice was scheduled
(Fig. ; the tagged instruction cannot trigger the around rule.

The popp and pushp instruction

To handle advice without a PROCEED instruction, the around rule also puts a
POPP instruction on the continuation stack first. After executing the advices, this
instruction pops any remaining instructions for the join point from the proceed
stack. For the POPP instruction to be able to function (it must pop at least one
instruction), the proceed rule pushes a PUSHP instruction on the continuation

108 Chapter 4. Specification and Simulation of Featherweight AspectJ

5‘ tag.
= o
c r 4 a P
ctack | top------- ’: s ?U -t ToTmrmmomes H Stack
I | walue .
! 1
' ' top
top ! !
\
Instr — .
Cell walue ﬁdo pE—instr— matehstatic W Inste walue Ce
I
,
i
next ' selected ne:-ct
i
Instr |
walue |
el) POPR ' Jolnpomt
|
et !
nest
|
Cellf-------=--mmmm = !
(a) around
o Advice — hest
Sta Ck Method
top adwce scope init
\
ren nstr
top ! Cell ‘- walue Scope
A
1
nest
!
!
(b) do
P
Pl top--------------------1
' .- Stack
! LT
: I
, top
i
T Y~
\ Cell
¥

argument

next - === -==-== Cell next Cell value

(c) proceed

Figure 4.17: The main rules for advice execution.

4.4. Language Semantics 109

c et ’\-___h__ 9
Stack [~ tDP':_C?UJ vame pus_'_p_. / Stack
'
top next‘ argulment st top
(a) pushp
C | --top- 3 Call - - -value -3 popp |
Stack
(=2

I o I
F |- top-m Call - -value- P - top e Gall k- value 3 ST
._*_, ' Stack _*___, do

Stack 0 h
! ref I P
n?xt o top et
. I Jainpaint | -
too Cell
(b) popp (c) popp-do
p
Ce {top.next*}
€ - Stack

Stack :
\.-'alue

top
Evaue*ﬂ(‘nitfmmatcmt

selected
rnatchstatic N

selected |n5tr—) Instr

(d) around_-more

Figure 4.18: More rules for advice execution.

110 Chapter 4. Specification and Simulation of Featherweight AspectJ

stack. This instruction, which is executed after returning from the PROCEED
instruction, which pushes the instruction that was triggered by PROCEED back on
the proceed stack, from which it will later be popped from by the POPP instruction.
The rules for the PUSHP and POPP instruction are shown in Figure [4.18

Triggering more than one advice

Figure [£.18d] shows the rule that is required to handle more than one advice.
Because the advice-triggering instruction was pushed on the proceed stack by the
first advice, instead of matching an instruction on the continuation stack, the rule
matches an instruction on the proceed stack that is referred to by a Joinpoint.
This rule does not require the instruction to be untagged; it was tagged by the
rule matching the first advice. The rule only matches point-cuts that have no ref
edge to the Joinpoint node yet and, when applied, the rule adds this edge to the
selected point-cut.

To illustrate the mechanism of advice execution, we explain the content of the
stacks in a number of stages in the execution of the second example scenario,
where the setGrade method of NamedFExzam is called with argument Zero.

The figures are shown in Figure [4.19

e (a). Initial state: The continuation stack C' contains the main expression
(see Fig. line 28), which is sequentialised into:

NEW Zero; NEW zero; NEW Ngmed Ezam; CALLsetGrade-
Stack P and S are empty.

o (b). After the two advices are scheduled: The S stack contains the Zero
object and the NamedExam object, with the Var representing grade zero.
The continuation stack contains, from top to bottom: a DO instruction that
will invoke the first advice; a POPP that pops any remaining instructions for
the join point from the proceed stack. The proceed stack contains, from top
to bottom: a DO instruction for the second advice, such that proceed in the
first advice will execute the second advice; the tagged CALL instruction for
setGrade, that will be executed by proceed in the second advice.

e (c). After the first PROCEED instruction: Since proceed is called on the
initial receiver of the intercepted CALL, and has the arguments of the inter-
cepted call as arguments, the S stack has not changed w.r.t. the previously
described state. The proceed stack now contains only the CALL instruction
that triggered the advices. The continuation stack contains, from top to
bottom: the DO instruction that will invoke the second advice; a PUSHP in-
struction that will push the DO instruction back on the proceed stack (after

4.4. Language Semantics 111

o P
E .
T&s e
3
=
o
5
5
E
[e] @O
& &
L o
@
-
o
=
5
—
ﬁ

=
3
=
=
a
=

Cell Instr Cell ! Instr
value = value
| tag call PopR
top Cell [—yvalue-f 57

new

id id nest
et Identifier neit
Zero ifi
i Identifier
5 Cell F—vahie» e ﬁ setGrade Cell
Gtack e

=
3
=

top- st st Cel

e e ¢
Cell il dE
amedbxam value value
value nstr d |dentifier var Object
call setlrade

name

o
08

-

w1
&
2
E

5 5

C
Stack
top
Cell |-value: Instr
do
next

argument et

Cell va\ue Cell

nest MAMe yalue
next top war
Cell [—value ::;;rp Cell |— value:
et nest
Cell el |—vaue-{ Obje
next
Cell

(c) After first proceed

Figure 4.19: Run-time part of Three States

112 Chapter 4. Specification and Simulation of Featherweight AspectJ

the advice has returned); the RETURN instruction of the first advice; and the
POPP instruction that will clean up the proceed stack.

4.5 Correctness of the Semantics

To increase confidence in the correctness of our semantics, we show that it coincides
with the formal specification of the AFJ language in SOS (Structural Operational
Semantics) style in [DDF08]. We will explain the proof strategy and the desired
result of the proof. The proof itself, however, is only given partly to provide an
intuition.

4.5.1 Notion of Correctness

We claim that the following correspondence holds between the applications of the
SOS rule and the GT rules:

SOS derivation
(C, 8,5, P) (c’,s',=', P

Tra Tra

graph derivation sequence

The picture can be read top-down or bottom-up: for all single SOS derivations,
there is a corresponding sequence of graph derivations, and for all sequences of
graph derivations between non-intermediate graphs there is a corresponding SOS
derivation — where a graph is intermediate if it is in between a number of graph
derivations that together correspond to the SOS derivation, i.e. when a SOS rule
is specified using more than one graph transformation rule.

In fact, we claim that the translation function is a weak bisimulation between
SOS configurations and graphs. This means that intermediate graphs have a
correspondence to the same SOS configuration as the resulting graph of a sequence
of GT rule application.

For example, the SOS rule for the CALL instruction corresponds to a visible GT rule
application of the CALL rule, followed by a number of internal rule applications for
parameter transfer and method body pushing. These ”internal” rules are always
applied first, before the next instruction is executed. Thereby, the intermediate
graphs implicitly correspond to the same SOS configuration as the final graph of
the sequence.

4.5. Correctness of the Semantics 113

To prove that Tra is a weak bisimulation we need to show that one SOS rule
application corresponds to one or a sequence of GT rule applications. This involves
showing:

e (1) The SOS rule applies if and only if the GT rule applies to the corre-
sponding graph.

e (2) The effect of the SOS rule is "the same” as the effect of the GT rule
(sequence), meaning that the resulting configuration and state again corre-
spond w.r.t. the translation function.

We define a mapping from the configurations in the SOS semantics to graphs.
(It should be noted that our language is a slight adaptation of that in [DDFOS];
the most important difference is that we only allow call point-cuts, whereas they
can define point-cuts for arbitrary instructions; on the other hand, we include
parameters into the advice, which they do not. To establish correctness, we use
an accordingly modified version of the SOS semantics.)

Then we give the actual proof, by illustrating that (1) and (2) hold for all SOS
rules. For those derivations that correspond to a single graph transformation rule,
we will see that the translated graphs for the configurations before and after —
correspond to the LHS and RHS (see Chapter [2)) of the graph transformation rule,
respectively. Thereby, correspondence is automatically proved. We show this for
the GET and SET instructions. For the sake of keeping this thesis interesting, we
omit the proof for the RETURN instruction. Proof of correspondence for NEw and
CALL is a little more complicated, as these derivations correspond to a sequence
of rule applications.

4.5.2 The SOS Semantics

The static structure of a given FAJ program is captured by three partial functions:

e FDecl : T — (Ident x T)*, yielding for each class type the sequence of field
declarations (where Ident is the universe of identifiers);

e MDecl : (T x Ident) — (Ident x T)* x T x FEzpr, yielding for each class
type the corresponding method declarations. A method declaration consists
of a list of parameters (pairs of identifiers and types), a return type and a
method body.

o ADecl : (T x Ident) — P((Ident x T)* x Expr), yielding for each pair of
class and method identifier the set of aspects that statically match calls of
that method.

114 Chapter 4. Specification and Simulation of Featherweight AspectJ

For every program, this triple of functions together with the initial expression plays
exactly the same role as the initial graph discussed in Sect.[4.3] except that there all
expressions (i.e., the initial expression and the bodies of all methods and advices)
have been sequentialised as discussed in Section In fact, there is a straight-
forward translation from each valid combination (FDecl, MDecl, ADecl, Expr) to
an aspect program graph; an intuition can be gained from the type graph of Figure
[4:4 We define the translation in the next subsection. Below we use Instr, Ident
and Class to denote the sets of nodes corresponding to Instr, Ident and T in the
program.

The dynamic structure, i.e., the states of the program, are encoded in the SOS
semantics as configurations (S, C, %, P) consisting of the same stacks and store as
in our graph-based semantics:

C € (Instr x Bool)* is the continuation stack, containing the instructions to
be executed, combined with booleans indicating whether the instruction has
already been advised (corresponding to the tag-edge used for this purpose

in Section |4.4.2)).;

S € Object” is the value stack, containing intermediate results;

e 3 : Object — T x (Ident — Object) is the heap, containing the run-time type
and field values of all objects;

P C (Instrx Bool)* is the proceed stack, containing the (tagged or untagged)
advices scheduled to be executed.

On the basis of these configurations, the SOS semantics consists of two types of
rules: first, rules to sequentialise expressions to their corresponding instructions;
and second, rules modelling the execution of the instructions. In our semantics we
have chosen to do sequentialisation as part of the pre-processing in Section [4.2.2
for the purpose of showing correctness in this section, we assume the same has
happened on the SOS semantics side; that is, we assume that all expressions are
already transformed into sequences of instructions.

The execution rule of instruction INSTR always has the form

side conditions
(INsTR : C, S, %, P) — (C', 5,3, P")

meaning that, if the side conditions are fulfilled, a configuration in which the first
instruction on the continuation stack is INSTR can perform a step, changing into
the configuration on the right hand side. For instance, the rules for GET, SET,
CALL, NEW and RETURN are:

4.5. Correctness of the Semantics 115

L) =(T.F) F(f)=uv
(GETf: C,v: 8,5, P) = (C,vg:5,%,P)

GET

E(vo) = (T F)
SET (sETf: Civ9:v: 8,3, P)
—p (Cyv: S8, X[vg — (T, F[f — v])],P)

E(UO) = (T7 F) MD@CZ(’(TL, T) = ((3717 s 7]}»,1),6)
cALL (caLLl i Civg:vy:...:v,: S, %, P)
—p (elx1/v1, ... xn/vn], this/vg : C, 8, %, P)

v & dom(X) FDecl(T) = (f1,T1),- -, (fn,Tn)
F:[fl,...,fn|—>v1,...,vn]
(NEWx : Cyvy i .. .yv, 0 S, X, P)
—p (C,v: S, Xv— (T,F)], P)

NEW

RETURN
(RETURN : C, 5,2, P) — (C,S,%, P)

Note that in these rules, the continuation stack elements are given as plain in-
structions rather than pairs of instructions and booleans; this is to indicate that
we do not care about the instruction tags.

The P-stack is only used for advice execution. Two example rules are given
below: the AROUND-rule to schedule advice execution, and the rule for executing
PROCEED.

ADecl(T,m)={ay...an}
((caLrl ff): C, %, P) —

A
ROUND (DO, : POPP : C, %,
DOg, @ ...: DOy, : (CALLy,, tt) : P)
PROCEED (PROCEED : C,%,i : P)
— (¢ : pusHPP; : C, %, P)
POPP (POPP,, : C, X, 44, .. iy : P)

— (C,%,P)

A derivation for PUSHP,, has not been specified in the SOS semantics. Instead, it
simply states that the instruction ¢ is pushed back on the proceed stack. We can
therefore only assume that the GT rule is correct.

116

Chapter 4. Specification and Simulation of Featherweight AspectJ

4.5.3 From Programs to Graphs

The translation from each valid FAJ program to a graph is defined by

Tra : (FDecl, MDecl, ADecl, Expr) — [F] U [M] U [A] U [E]

where [F], [P], [A] and [E] are the graphs corresponding to the individual data
structures; the combined graph is the union of these. The individual graphs in
turn are defined as follows:

e For FDecl, we assume a set of nodes Class corresponding to the types in

dom(FDecl), a set of nodes Ident and a set of nodes Field corresponding
to the fields. These will be encoded as a combination of ¢ € Class and a
field declared in ¢:

Field = {(¢,id,t) | FDecl(t) = F (id,t") € F}
Using this set of nodes, the graph for FDecl is defined by:

[F] = (Class UField U Ident, Er) where
By = {(t, t1e1d, /) | f = (t,id,#)} U
{(f,name,id) | f = (t,id,t")} U
{(t,next, f) | f = (t,id,t"), FDecl(t)[0] = f} U
{(f,next, f) | f = (t,id,t"), FDecl(t)[i| = f, FDecl(t)[i +i] = [’}

Notice that we do not translate the type of fields; these are not required for
the transformations. (For simplicity reasons, we ignore FoL nodes).

For MDecl, we represent methods as a set of nodes Method ; these will be
encoded (T, m), where T € Class and m is a method declared in T. Due
to the way MDecl is defined, we need to extend our program graphs; for
all methods declared in classes with subclasses, we create Method nodes for
each subclass of the type the method is declared in. Thereby, each method
that can be called on an object is directly available in the type of the object.
We can then in fact use the rule call_mbody_-match immediately when doing
a method-lookup, without ever having to use call_mbody_up.

We assume a set of nodes MethodBody corresponding to the expressions e of
methods m, where MDecl(m) = (P,t',e). We also need nodes to represent
parameters; these will be encoded as pairs (m,p,T), where m is a method
and p is a parameter of type T declared for m:

Method ={(¢,id) | (¢,id) € dom(MDecl)}
Parameter = {(m, id, t) | MDecl(m) = (P,t',e), (id,t) € P}

4.5. Correctness of the Semantics 117

Using this set of nodes, the graph for MDecl is defined by:

[M] = (Class UMethod U Parameter U MethodBody
UInstr U Ident, E)s) where
Ey = {(t,method, m) | m = (t,id)} U
{(m,field,id) | m = (t,id)} U
(m, parameter,p) | m = (¢,id),p = (m,id,t)} U
(p,name, id) | p = (m,id,t)} U
(m next,p) | MDecl(m) = (P,t’ e), P[0] = p} U
(p,next,p’) | p = (m,id,t),p’ = (m,id’, '),
MDecl(m) = (P,t',e), Pli] = (id), Pli + 1] = (id',#')} U
(m,body, e) | m = (t,id), MDecl(m) = (P,t',e)} U
{(e,next,ins) | S(e)[0] =ins} U
{(ins,next,ins’) | S(e)[i] = ins, S(e)[i'] = ins'}

Here, S is the sequentialisation function of Figure [£:3] We require that
instructions are never used twice; they are distinct and consist of the in-
struction type and a unique index. Notice that we do not translate the
return type of a method.

{
{
{
{
{

e For ADecl , we need a set of nodes Pointcut that are encoded by their
signature (t,id) representing a call to a method with identifier id in type t.
Advices are methods and are translated to graphs the same as for MDecl, ex-
cept that the sequentialised expression may contain a PROCEED instruction.
Also, advices do not have a signature like methods, because they are not de-
clared in a class. For simplicity, we encode instructions as pairs of a type and
a list of parameters; CALL instructions are encoded as (CALL, (t,id)), with
id a method identifier and ¢ the type of the target object; DO instructions
are encoded (DO, a), where a is an advice (i.e. a method).

The graph for ADecl is defined by:
[A] = (Class UPointcut UMethod U Instr U Ident, EF4) where

E4 = {(pc,matchstatic,ins) | pc = (t,id),ins = (CALL, (t,id))} U
{(pc, field,ins) | m = (t,id),ins = (DO, a),a € ADecl(t,id)} U
{(ins,name, a) | ins = (DO, a)} U

4.5.4 From Configurations to Graphs

The translation of SOS configurations to graphs is defined by
Tra : (C,S,%, P) — [CTU[S]U[Z] U[P]
where [C], [P] etc. are the graphs corresponding to the individual data structures;

the combined graph is the union of these. The individual graphs in turn are defined
as follows:

118

Chapter 4. Specification and Simulation of Featherweight AspectJ

e For each of the stacks, we introduce a single special Stack-node with the

name (C,P, or S) of the stack, which stands for the stack as a whole, and
Cell-nodes that stand for the stack positions. As representatives we can use
integer numbers:

StaCk i {” 077 , 7 S77 , ” P”}
Cell ={0,...,n} where n is the stack size

The nodes are linked with top-, next- and value-edges in accordance with
the type graph of Figure Using |C] to denote the size of C' and C* to
denote the value at position ¢ (where the bottom position is numbered 0 and
the top |C| — 1), the formal definition is:

[C] = (Stack U Cell U Instr, E¢) where
Ec={("C",top,|C|—1)} U
{(i,next,i—1)|0<i<|C|} U
{(i,value,x) | 0 < i < |C|,C* = (z,b)} U
{(i,tag,i) [0 <i <|C[,C" = (x,tt)}

Note that stacks always contain a spurious Cell-node for the sake of unifor-
mity, so that even the empty stack has a top-edge.

The P-stack is encoded in the same way; so is the S-stack, except that the
value-edges point to Objects, and no tag-edges are required.

For the store, we assume a set of nodes Object corresponding to the objects
in dom(X), that is, those objects that are actually allocated on the heap.
We also need auxiliary nodes to represent the object fields; these will be
encoded as pairs (o, f) where o € Object and f is a field declared for o’s
type:

Var = {(o0,1d) | X(0) = (t, Fd),id € dom(Fd)}

Using this set of nodes, the graph for X is defined by

[X] = (Class UObject U Ident UVar, Ex;) where
Es, = {(v,name, id) | v = (0,id)} U
{(o,var,v) | v=(o,id)} U
{(v,value,o0) | v = (0,id), Fd(0') = 0o} U
{(0, type,t) [X(o) = (¢, F'd)}

4.5.5 Proof of Correctness

We now give the actual proof, which involves showing for each SOS rule that:

4.5. Correctness of the Semantics 119

e The SOS rule applies iff the GT rule sequence applies to the corresponding
graph;

e The effect of the SOS rule is ”"the same”.

get correspondence

First, we show correspondence between a GET derivation and the get rule in Figure
[477] First, we give the graph translation of the requirements of the inference rule,
i.e. the part on the left of the —, arrow. We denote this graph [GET]. The graph
after — is denoted [GET]’. The graphs consist of a set of nodes and edges, where
the set of nodes are defined by the Tra functions for programs and configurations.
We only give the set of edges. We omit Ep for base language instructions. We
use k = |Ec|,m = |Es|,0 = |Ep|.

[cET] = (N,Ec UEs U Ex;) where
Ec ={("C",top,k)} U
{(IC| — 1, value, (GET, f))} U
|C| — 1,next, k — 1)

Es = {{’S", top,m)} U
m,value,v)} U
Es, = {(v,type,T)} U

(
(
(
(
(m,next,m — 1)}
(
(
(

This exactly corresponds to the left-hand-side of the rule. After application of
—p, the configuration is translated to the following graph:

[cET] = (N, EL U Ey U EL) where

v,var, (v, f))} U
(v, f

), value, vs)}

Eq ={("C”,top, k)}
Ey ={("S”,top,m)} U
(m,value,vg) U
(m,next,m — 1)}
Ef = {(v,type,T)} U
(
(
(

(
{
{
{
{
{
{
{
{

This corresponds to the right-hand-side of the rule; therefore we have proved that
the correspondence holds.

120 Chapter 4. Specification and Simulation of Featherweight AspectJ

set correspondence

Now, we show correspondence of a SET derivation and the set rule. Again, the
node set IV is defined by the edgeset E and we omit P.

[SET] = (N,Ec U Es U Ex;) where
Ec={("C”,top,k)} U
{(k,value, (sET, f))} U
{(k,next, k —1)
Es={("5”,top,m)} U
{(m,value,vp)} U
{(m,next,m —1)} U
{(m —1,value,v)} U
{(m — 1,next,m — 2)}
{(vo,type T)} U
{(vo, var, (vo, f))} U
{(
{«(

(vo, f),name, f)} U

(vo, f),value,0)}

By, =

Since all variables (field instances) in FAJ programs must have a value, we rep-
resent this unmentioned value by an object o. This exactly corresponds to the
left-hand-side of the rule. After application of —, the configuration is translated
to the following graph:

HSET]]’ = (N',E UEyUEY) where
— {(C", vop,)}
— {(*8", vop,m)} U
{(m,value,v)} U
{(m,next,m — 1)}

= {(vo, type, T)} U

{(vo, var, (vg, f))} U
{((vo, f),name, f)} U
{((

vo, f), value,v)}
This graph corresponds to C, .S and ¥ in the right-hand-side of the rule; therefore

we have proved that the correspondence holds. Indeed, the graph deletes the
current value of field f in vy, and sets the new value v.

call correspondence

We now show that the SOS derivation for the CALL instruction corresponds to a
sequence of rule applications consistent with the following control expression:

4.5. Correctness of the Semantics 121

Tk W N

call;

call_pushcode_match;

alap { call_initparam };

call_pushcode_start ;

until (call_pushcode_end) do { call_pushcode }

We start with the graph translated from the SOS derivation before —:

[[CALL]] (N FEcUFEgU Eg) where
Ec={("C",top,k)} U
{(k,value, (CALL, (T, m)))} U
{(k,next, k —1)
Es ={("5”,top,m)} U
{(m —i,value,v;) |0 <i<n} U
{(m—i,next,m —i—1)|0<i<n+1}
= {(vo, type, T)}

m
m

Ey,

Besides the configuration, we know that there is a (m,T’) € Method connected to
T € Class. This method has Parameter nodes for z1,...,z,, and a MethodBody
connected to a sequence of instructions that corresponds to S(e).

The derivation yields an unsequentialised expression on the continuation stack.
In the SOS semantics, this expression is sequentialised on-the-fly. Also, usage of
method arguments is represented as a substitution of elements of the expression
with arguments of the method-call. For the sake of simplicity, we assume that
elxy/v1,. .., 2, /v,] corresponds to S(e), with e containing VAR, instructions such
that these variables yield the substituted values. Now, the configuration after —
is translated to the following graph, ignoring parameters:

[caLL]’ = (N,Ec U EsU Ex;) where

E¢ ={("C”,top,k)} U
(k —i,value,S(e)[i]) |0 <i < |S(e)|} U
(k—id,next,k—i—1)|0<i<]|S(e)
("S”, top,m)}
(vo, type, T)}

{
. {
s ={
Es =A{
Now we show that the corresponding graph transformation yield a corresponding

graph. From (N, E) we first apply the call rule. The top of C is removed; the
rest of the rule adds control information that triggers rule call_mbody_match for

122 Chapter 4. Specification and Simulation of Featherweight AspectJ

the method with identifier m in class T'. This yields the following configuration:

caLL]! = (N, ELUELUEL) where
[carr] cUEgUEy
BL ={(°C", top,)}
EL = {(*8" vop,m)} U
{(m —i,value,v;) | 0 <i<n} U
(m—ii,next,m —i—1)|0<i<n+1}
By, = {(vo, type, T}

Next, the call_mbody_match rule binds the value for the this variable and trig-
gers parameter transfer at the correct Method node. This yields a Scope node
with connected Var mnodes for all parameters and this, later to be used by
VARinstructions. We leave the correspondence of parameter transfer in our seman-
tics and parameter substitution in the SOS semantics at that. After parameter
transfer, the graph of the configuration is:

[[CALL]]2 (N2, E%4 UF2UE%) where

={("C",top, k)}
Es = {("57,top,0)}
EZ = {(vo, type,T)}

Stripped down to an almost empty configuration, we want to stress that the graph
also encodes values for the method parameters. Also, the final application of
call_initparam triggers the call_pushcode_start rule. This rule creates control infor-
mation to trigger the call_pushcode rule for all instructions in S(e) in a backwards
fashion until call_pushcode_end can be applied. We show the resulting config-
urations after the first application of call_pushcode and after the application of
call_pushcode_end. After pushing the last instruction of S(e):

[carL]® = (N3, E2 U E3 U EY) where
(70" v0p,)} U
{(k,value,ins) | S(e)[k] = ins,k =|S(e)] — 1} U
{(k,next, k — 1)}
Eg‘ = {(”‘vatopam)}
Eg} = {(UOatYPe»T)}

After all instruction have been pushed onto C, the final configuration is:

[caLL]? = (N4, EL U EL U EY) where

EL ={("C",top,k)} U
{(k —i,value, S(e)[i]) |0 <i<|S(e)]—1} U
{(k — i,next k—2—1)| <i<|[S(e)]}
{(
{(

775’7 tOp,)}

4
S
Ef = {(vo, type,T)}

4.5. Correctness of the Semantics 123

Thus, [cALL]’ = [cALL]* and we have proved the correspondence (assuming the
shortcuts in our proof for some of the invisible steps are correct).

new Correspondence

Next, we show that the derivation for the NEW instruction corresponds to a
sequence of graph transformations. The configuration translated to a graph before
the derivation is:

[[NEW] =(N,EcUEsUFEyx) where
={("C”,top, k)} U
{(k,value, (NEW, X))} U
{(k,next, k — 1)

{(”S” tOp,)} U

{(m —i,value,v;41) | 0<i<n-—1} U

{(m —i,next,m —i—1)|0<i<n}

0

Also, the graph contains a translation of FDecl(X) = (f1,T1),...,(fn,Tn). The
translated configuration after —, is:

[NeW]' = (N, E U E5 U EY,) where
Eg ={("C”, top, k)}
E S”,top,m)} U
m,value,v)} U
m,next,m — 1)}

(7
(
(
Ev, type, X)}
(

{,}\

=
{
{
By ={
{

v,var, (v, f;)) |1 <i<n} U

{((v, fi),value,v;) | 1 <i<mn}

Now, we show that the derivation corresponds to rule applications consisting with
the following control expression:

new; alap{new_initfield }; new_end

First, we show the configuration graph after application of the new rule:

[New]! = (N',EL UELUEL) where

(N

EC*{(’ C”,top, k)}

Eg = {("8”,top,m)} U
{(m —1i,value,v;41) |0<i<n—1} U
{(m — i,next m—z—1)|0<z<n}
= {(v, type, X)}

124 Chapter 4. Specification and Simulation of Featherweight AspectJ

Also, the graphs contains control information to trigger the new_initfield rule for
the first parameter and the newly created object v. After the first application of
new_initfield, the configuration graphs is:

[NEW]? = (N2, E2 U E2 U E2) where

B2 = {("C", top,)}
F% = {(*S", top, m)} U
{(m —i,value,v;42) |0 <i<n—2} U
{(m—i,next,m—i—1)|0<i<n-—1}
B3 = {(v,type, X)} U
{(v,var, (U7fl))} U

{((v, f1),value,vy)}

The rule is applied exactly n times. Then, all fields are initialised and new_end
can be applied. The resulting configuration graph is:

[New]? = (N3, B3 UE2 UE?) where

E¢ ={("C”,top,k)}

EZ = {("S”,top,m)} U
{(m,value,v)} U
{(m,next,m — 1)}

ES = {(v, type, X)} U

= {(v,var, (v, f;)) |1 <i<n} U

= {((v7fi)avalue,vi) | 1 S T S 77,}

Because [NEW]’ = [NEW]?, we have proved correspondence.

around correspondence

Next, we now show correspondence of the AROUND derivation. The configuration
before the derivation is translated to the following graph:

HAROUND]] = (]\/v7 EcUFEsUEx U Ep) where

”Qn top, m)}

Although we know that 3 contains the target of the CALL and optionally values for
the parameters of the CALL , we can assume they do not exist for this derivation.
Also, besides the configuration, we know that the graph contains a translation

4.5. Correctness of the Semantics 125

of ADecl(T,m) = {a1,...,a,}, with DO instructions for all advices. After the
derivation, the configuration is translated to the following graph:

[arouND]' = (N',E, UEL U E{ UE%) where
Bl = {(°C" top, I} U

(k,value, (DO,a1))} U

(k — 1,value, (POPP))} U

(k,next,k—1)} U

(k—11,next, k — 2)}

(

E 757, top,m)}

/

&
T‘M we
I
A P S P P A

={("P”,top,0)} U

(o —i,value, (DO, a;42)) | 0<i<n-—2} U
(0 —n+ 1,value, ((CALL, (T,m)), tt))} U
(0 —i,next,0o—i—1)|0<i<n-—1}

We show that this corresponds to one application of the around rule followed by
n — 1 applications of the around_more rule. After the around rule, the graph
contains the following configuration:

[arouNnD]! = (N',ELUELUELUE}L) where

B} - {(°C” vop, k) U
{(k,value, (DO,a1))} U
{(k — 1,value, (POPP))} U
{(k,next, k — 1)} u
{(k — 1,next, k —2)}

EL - (5" op,m)}

EL = 0

E113 = {("P”,top,0)} U

{(o,value, ((cALL, (T, m)),tt)} U
{(0,next, 0 — 1)}

The around_more rule is triggered by the CALL instruction somewhere in P and the
DO instruction on C. Each application of around_more pushes the next advice
on top of the proceed stack. However, the advices are not actually ordered in
the graph. This has been done on purpose, to be able to simulate all possible
advice orderings. To achieve correspondence, the around_more rule is assumed to
be applied corresponding to the ordering of the advices in the derivation. The
selected edge is created to ensure all advices are only scheduled once. The
Joinpoint node is created to collect these edges each time a CALL instruction
is adviced. After n — 1 applications of around_more, the configuration graph
corresponds to [AROUND]'. Thereby, we have proved correspondence.

126 Chapter 4. Specification and Simulation of Featherweight AspectJ

proceed correspondence

Correspondence for PROCEED is again a straight-forward translation correspond-
ing to the LHS and RHS before and after the derivation, respectively. Since no
derivation is given for PUSHP we cannot give correspondence there either. How-
ever, the derivation for POPP again requires a sequence of applications of graph
transformation rules.

popp correspondence

Next, we prove correspondence for the POPP instruction. In the SOS derivation,
when n advices (a1, ..., a,) are scheduled for execution, the POPP instruction is
annotated with a natural number n; it pops n instructions from the proceed stack.
We explain that after advice execution is finished (leaving the POPP instruction
on the continuation stack), the proceed stack always starts with (DOa, ..., DOy,).
We distinguish two situations.

First, all advices aq,...,a, contain a PROCEED instruction. Before executing the
first DOinstruction on the continuation stack, there are n — 1 DO instructions
and one CALL instruction on the proceed stack. For each PROCEED executed in
an advice except the last advice, a DO instruction is popped from the proceed
stack. A PUSHP instruction pushes the DO back on the proceed stack when the
corresponding advice is finished. A proceed in the final advice pops the intercepted
instruction and pushes this instruction together with a PUSHP for this instruction
on the continuation stack.

Second, if advice k does not contain a PROCEED, it finishes leaving do; with i > k
on the proceed stack and PUSHP instructions for DO; with 2 < ¢ < k on the
continuation stack.

We show the correspondence between (1) the SOS derivation for POPP,, and (2)
n — 1 application of the popp_do rule followed by a single application of the popp
rule. The configuration before — is translated to the following graph:

[poPP] = (N, Ec U Ep) where
Ec ={("C",top, k)} U
{(k,value, ((POPP,n))} U
{(k,next, k — 1)}
EP — {(”P”’top7 O)} U
{(0 —i,value,z;) |[0<i<n—1} U
{(0 —i,next,o—i—1)|0<i<n-—1}

After —, the configuration is translated to the following graph, where C' and P

4.6. Graph-Transformation-Based Simulation 127

are empty:
[poprp] = (N',E U E}) where
EIC ={("C",top, k)}
EED ={("P”,top,0)}

Although we have shown the [POPP] with instructions xi,...,%,, we know in
fact what these instructions are: x; = (DO, a;42) for 0 < i < n—2 and z, =
(CALL, tt). Also, in the graph production rules, the POPP instruction does not
have an argument n. The popp_do rule removes a DO instruction from the proceed
stack, but leaves the POPP instruction on the continuation stack. After n — 1
applications of popp_do, only the intercepted instruction remains on the proceed
stack. This leaves the following configuration graph:

[popP]! = (N',EL, UE}L) where
EL ={(C”,top,k)} U
{(k,value, POPP)} U
{(k,next, k — 1)}
Eb={("P" top,0)} U
{(o,value, (CALL, tt))} U
{(o,next,0—1)}

Applying popp removes the POPP instruction from the continuation stack and the
tagged instruction from the proceed stack, thereby leaving a configuration graph
that is equal to [POPP]’. Thereby, we have proved correspondence.

4.6 Graph-Transformation-Based Simulation

We demonstrate the simulation capabilities of the operational semantics by means
of the two scenarios of the example shown in Section Simulation is done by
using the GROOVE Simulator, which requires a graph production system and a
start state. We will demonstrate this also in Chapter

When using a “full” simulation strategy, the GROOVE simulator will try to match
and apply all rules in all states (while respecting any priorities). This results in a
state space, where states are graphs, and transitions are rule applications labelled
with the name of the applied rule. This provides a simple and intuitive visual
representation of the execution of the simulated system, the LTS.

The LTS can be used for analysis and verification, e.g. for model-checking. Also,
the work described in Chapter 5] which is described using the semantics in Chapter
also can be applied to our FAJ semantics.

Figure shows the generated LTS for the two scenarios. In Figure the
setGrade method is called on an instance of NamedExam with argument five. The

128 Chapter 4. Specification and Simulation of Featherweight AspectJ

first branching (non-determinism) visualises the two choices in scheduling the two
advices. When, in both cases, the advices and the setGrade method have returned,
the two branches merge into the same final result, where the grade is set to five.

Figure[£:20D] the argument of the setGrade call is zero, causing the second advice in
the example to behave differently: zero decreased by one remains zero. Again, after
one-third the LTS branches into the two scheduling scenarios. In the left branch,
the first advice of the example is executed before the second advice, causing the
final result to be Zero (it is first increased and then decreased). In the right
branch, the second advice of the example is executed first, causing the final result
to be one. This is visualised by the two distinct final states: the branches are
non-confluent.

In Chapter [f] we show how this non-confluence can be used as an indicator of
aspect interference. Here we like to point out that the executable nature of the
graph-transformation based semantics enables the use of such verification methods
without any additional work needed.

4.6. Graph-Transformation-Based Simulation 129

-
o

F
T

(eleieieieie]

(]

f
t

|BiEiEiE

(a) Scenario 1 (b) Scenario 2

Figure 4.20: LTS for the Example Scenario’s.

130 Chapter 4. Specification and Simulation of Featherweight AspectJ

4.7 Evaluation of the Semantics

In this section we evaluate the contribution of our specified semantics. We dis-
cuss our observations while comparing the graph-based semantics to the corre-
sponding SOS semantics. Then, we evaluate the predicted advantages of graph-
transformation-based operational semantics over textual semantics, such as SOS.
Finally, we compare the semantics to the graph-based semantics that was pre-
sented in Chapter

4.7.1 Observations

First, we briefly discuss our observations while comparing the graph-based seman-
tics with the corresponding SOS:

e The CALL- and NEW-rules in the reference SOS semantics include substitu-
tions over lists. Graph transformation are not suitable for doing such at
once (with the used graph-based state representation). Therefore, we re-
quired multiple rules that specify such behaviour, and more than one rule
application to execute the behaviour;

e Instead of a VAR instruction, the SOS rules substitute variables with their
values when pushing the method body on the continuation stack. This may
give incorrect results when variables are first re-assigned (i.e. set) and then
used.

e In the SOS rules, the result of the NEW instruction was originally pushed on
the continuation stack. We found no need for this — it actually required an
additional derivation that moves an object on the continuation stack to the
value stack — and have modified the SOS rules accordingly.

e The graph-based semantics is in fact more precise, as it not only specifies
a signature for the auxiliary functions FDecl,MDecl and ADecl, but also
defines how input is mapped to output. Proof of correspondence is therefore
under the assumption that these functions also correspond.

e To be able to compare graphs (using isomorphism, see Section7 we found
that a rule was required for garbage collection, which is not regarded in, nor
required for the SOS semantics.

e As explained in Section we interpret the POPP instruction in a different
way, yet yielding the same result.

4.7. Evaluation of the Semantics 131

4.7.2 Evaluation

We have shown in Section that we can simulate FAJ specifications using the
specified operational semantics. We have not implemented a translator from FAJ
programs to graphs; instead we have given a definition of the structure these
graphs are required to adhere.

The executable nature of the semantics is a direct benefit for the rigour of the
specification approach. Using a (number of) test programs, simulating these will
quickly shows if the semantics is “working”: any missing structure will fail the
execution.

Some auxiliary rules can be used to simplify this testing-approach. For example,
a rule program_end can be used that matches an empty continuation and proceed
stack. A simple visual analysis of the graph can determine if each execution trace
leads to a state where the program_end condition holds.

The graph transition system represents the execution state space of a single FAJ
program. Such a state space can be used for verification approach such as model
checking. Also, additional rules can be added that express certain conditions
(similar to the program_end rule described earlier) that must hold during the
execution of the program. For aspects that match the same instructions, the
transition system represents all possible execution orders of such advices. We
have already illustrated that this can lead to non-deterministic execution. In
Chapter [5] we describe this in more detail as a verification approach, which is
directly applicable to the simulation results of the semantics as it is described in
this chapter.

In addition, we believe that the visual nature of the graph transformation rules
will appeal to many readers that are not experts in mathematics. Programmers
are used to think of software in terms visual artefacts, since the use of visual
editors are a common way to design software.

Since we have used an existing (SOS) semantics as our notion of correctness,
one may question the need for a new (graph) semantics for the same language. To
motivate this once more, let us point out that our semantics is directly executable,
in contrast to the SOS rules which (among other things) contain substitutions
over lists, as well as many auxiliary functions. In fact, in setting up our rules
we have had the opportunity to repair a number of smaller and larger oversights
(described above) in the SOS semantics, precisely because these were shown up
by the simulation of the rules. Had the SOS semantics been specified for MAUDE
ICDE™02|, which allows execution of SOS semantics, then (1) none of the short-
hand (non-formal) notations could have been used, (2) all functions had to be
defined and (3) execution of the semantics would not yield a easy to use, visual
result.

132 Chapter 4. Specification and Simulation of Featherweight AspectJ

4.7.3 Comparison with CF

We take this opportunity to compare the semantics of FAJ defined in this chapter,
with the operational semantics for Composition Filters of Chapter

In the FAJ semantics, method-bodies are represented as sequences of instructions.
After parsing the program, these sequences are generated by applying a sequential-
isation function. This requires a stack-based model, where the instruction on top
of the continuation stack is executed, optionally using arguments that are pushed
onto the value stack earlier. Since the language does not support any jump op-
erations, control flow is directly represented by the ordering of the instructions.
In contrast, the CF semantics uses a graph-based representation of the abstract
syntax tree (AST), which is a direct product of a parser. To be able to execute this
syntax representation, control information must first be added explicitly. Then,
the “stack” is represented as nodes representing frames and an edge representing
the program counter. The low-level language model used by the FAJ semantics
resembles an actual implementation of a (virtual) machine that executes FAJ pro-
grams. It can be used as a formal model of such a machine. In contrast, the model
used in the CF semantics closely resembles the syntax, which increases the read-
ability of the semantics. It is more likely to serve as a reference for the language
semantics.

The aspectual extension of both semantics allows the interception of method calls.
In the FAJ semantics, this is done by matching a CALL instruction on top of the
continuation stack, resulting in the scheduling of advices by pushing DO instruc-
tions (that are similar to CALL instructions, but instead invoke an advice). In the
CF semantics, the scheduling of aspects is triggered by the initialisation of a frame
node that has a target object of which the type is enhanced with filter modules.

The CF semantics specifies the entire aspectual extension of Composition Filters.
The FAJ semantics merely includes a small aspectual extension to Featherweight
Java. The language model, however, limits the aspectual extension to the intercep-
tion of instructions. The aspectual language then falls in the category of languages
with fine-grained joinpoint models (such as Aspect]), whereas CF is more likely
to be used as a composition mechanism (see Chapter . The specified advice
language of CF consists of filter evaluation and the invocation of filter actions that
does not use any base language constructs. The semantics can be used to simulate
join points: simulation starts when filter module execution is triggered by a spe-
cific method-call and stops where base program execution would continue. This
gives a certain level of abstraction: a single simulation may represent execution
of a groups of joinpoints in different programs. In the FAJ semantics, advices are
special methods (invoked by DO instructions) that contain PROCEED instructions.
Being able to execute FAJ advice therefore requires the full specification of the
base language. By representing the entire program as a graph, The entire program

4.8. Conclusion 133

can be simulated in a concrete fashion. Both semantics can be used to simulate
different advice orders non-deterministically. In the next chapter we will show
how this feature can be used to detect the presence of aspect interference.

4.8 Conclusion

4.8.1 Related Work

There are quite a few works describing a specification of an aspect-oriented op-
erational semantics. Most of these approaches focus — like this work — on a
simplified base language and aspectual extension. In general, they focus on a
certain feature of aspect-oriented language; such investigations typically aim to
improve understandability of a feature, or to experiment with a new feature or a
variation of the feature.

Clifton et al [CLWO03] give a formal definition of the parameterised aspect calculus.
This is a purely mathematical specification of a base language and a variety of
point-cut description languages. The specification does not provide a direct means
for execution. Kiczales et al. [KD02] give a denotational semantics for a first-order
procedural language with join-points for procedure-call and procedure and advice
execution. Denotational semantics do not expose the execution steps that we
want to use for analysis and verification. Lammel [Lam02] presents an operational
semantics for an imperative object-oriented language with join-points for method
calls. Walker et al. [WZL03] present a core aspect-oriented calculus based on the
simple-types lambda calculus. Jagadeesan et al. [JJR03] give a calculus of untyped
aspect-oriented programs. Their specification is class-based, and models multi-
threaded programs. Clifton et al. [CLO5] provides a calculus for an imperative
object-oriented language with advice bindings and proceed.

The works mentioned all use a mathematical notation, whereas our notation is of
a more intuitive visual kind. The works mentioned also do not provide a means
for execution, whereas our work can be directly be used to visually represent the
execution of a specific FAJ program.

4.8.2 Contributions

In this chapter we have defined a graph transformation-based semantics for a
simple object-oriented language with around advice. The specified language, As-
signment Featherweight Java, lends itself very well for studying the implications of
language extensions. We have extended this language with around advice bound
to point-cuts that select certain instructions.

134 Chapter 4. Specification and Simulation of Featherweight AspectJ

We have explained that a graph transformations is a formal specification technique,
and have illustration that a graph transformation based operational semantics can
be complete with respect to a certain reference semantics.

A graph-tranformation based semantics is directly executable. This can help in
finding bugs and testing the semantics. Due to its executable nature, the graph
transformation-based specification has led to the discovery of errors (e.g. a missing
rule) in the specification that is used as a correctness criterion; we see these errors
as an unfortunate consequence of the (more traditional) textual formal notation
used.

We have demonstrated that a graph transformation based specification allows sim-
ulation of a program written in the language, if this program is represented as a
graph as described in this paper. This gives a simple and intuitive view on the
execution of the program, and opens the road towards applying existing verifica-
tion methods such as analysis based on model checking. We have shown that our
simulation tool allows non-deterministic execution, which opens possibilities for
the verification of ordering conflicts between aspects.

Chapter 5

Analysing Aspect Interference on
Shared Join Points

5.1 Introduction

Aspect-oriented programming languages allow the modular specification of cross-
cutting concerns, thereby improving separation of concerns at the implementation
level. We have illustrated in Section that when multiple aspects are applied
to a system unexpected results can emerge: two or more aspects behaving cor-
rectly when applied in isolation, may interact in an undesired matter when applied
together. This phenomenon is called aspect interference.

In this chapter we take a look at a specific kind of aspect interference, namely
when it happens at a join point that is selected by more than one pointcut, a
so-called shared join point. At such points, two or more advices are scheduled for
execution. When no fixed order of advice execution is determined by the program
directives, but the order of advice execution affects the result, a shared join point
can lead to unpredictable and undesired behaviour of the woven system, or even
an ambiguous system. Other studies such as [NBAO5] have already indicated that
special attention must be paid to shared join points.

In this chapter we propose a detection mechanism for aspect interference at shared
join points. The approach is based on simulation using a semantics specified with
graph production rules. Such a simulation results in a graph transition system,

135

136 Chapter 5. Analysing Aspect Interference on Shared Join Points

a state space where states are in fact graphs, and transitions are graph transfor-
mation rule applications and are labelled by the name of the rule. We will show
that, by simulation of different advice orderings in a specific way, aspect interfer-
ence will result as non-confluence in the state space, making detection an almost
trivial task. We demonstrate the approach for the Composition Filters language,
for which we have defined such a semantics in Chapter |3} We will argue that CF
is typically but not solely suitable for our approach.

This chapter is organised as follows. In Section [5.2] the problem of aspect interfer-
ence at shared join points is discussed in more detail and an example is introduced.
In Section we will explain our approach in detail. In Section we present
an adaptation of the CF semantics presented Chapter [3| to implement our ap-
proach and to use it for the example used in this chapter. In Section we show
the illustrate simulation and present the experimentation results of the approach
applied to the example. In Section we evaluate the approach for a number
of properties. Finally, in Section we discuss related work, give a discussion
possible future extensions and present the contributions of our work.

5.2 Problem Definition

In this section we will elaborate on the problem of interference among aspects at
shared join points. Then we illustrate the problem with an example specified in
the Composition Filters language.

5.2.1 Aspect Interference at Shared Join Points

Interference between aspects at shared join points will only occur when aspects
depend on the same system state during the execution of the advice. Three differ-
ent kinds of interaction between aspects can cause interference to occur at shared
join points.

1. The first problem is what we refer to as scheduling interference. Advices
can be woven conditionally, meaning that whether the advice is invoked
depends on the result of evaluation of a dynamic predicate. At run-time, such
predicates typically involve the evaluation of a boolean expression. When
more aspects are scheduled, an earlier executed aspect may influence the
evaluation of this boolean expression. Thereby, it can change the scheduling
of an advice. Scheduling interference is caused by a common feature of
aspect-oriented languages; they allow pointcuts to consist of predicates over
both the static structure of the program and the run-time state. The latter
predicates allow the aspect to be applied only at a certain run-time state.

5.2. Problem Definition 137

Where the static predicates are typically resolved during weaving - resulting
in a set of so-called shadow join points - the dynamic predicates (so-called
pointcut residues) are typically woven in with the advice as an if-statement.

2. The second problem — control interference — occurs when one aspect
changes or aborts the control flow of the system, for example by abort-
ing the join point action and all succeeding aspects to be executed at that
join point. A typical AspectJ example of this behaviour is an around advice
without a proceed() statement.

3. Aspect interference can also occur if one aspect writes to variables or fields
that are later used by other aspects, such that the behaviour of a succeeding
advice is affected. As this data interference is a general cause for aspect
interference, it can also occur on shared join points. It can happen when
one aspect writes to a variable that is read by another aspect, or when both
aspects write to the same variable. In the latter case, the operations may
be orthogonal causing no problem at all; but they can also disable or undo
each other.

Scheduling interference cannot occur in Composition Filters. Pointcuts consisting
of dynamic predicates can be expressed in CF as conditions. We have explained
in Chapter [3] that these conditions are evaluated once for every joinpoint, namely
when a message enters a set of filters. Any change of the run-time state caused
by the filters is not reflected by the value of the conditions.

5.2.2 Example Aspects

We will illustrate the problem by examples of aspect interference. Consider a
system where String objects are sent between objects and assume we add the
following four aspects to this system:

e Logging: The “logging” aspect logs method-calls to a certain location (e.g.
to a file or to the console).

e Authorisation: The “authorisation” aspect will disallow unprivileged users
from using certain methods in the system. These methods will be blocked
by aborting the method dispatch process and throwing an exception.

2

e Parent: The “paren
is sent.

aspect removes inappropriate words in a String that

e Encryption: The “encryption” aspect encrypts the String that is sent for
secure transportation in the system.

138 Chapter 5. Analysing Aspect Interference on Shared Join Points

The combination of the logging and authorisation aspects illustrates an example
of interference type 2 as presented above: interference caused by a control-flow
modification. When the logging advice is executed before the authorisation advice,
a method can be logged without being executed. In reverse order, the method may
be aborted before the method-call is logged.

The parent and encryption aspects combined illustrate an example of interference
type 3: both aspects change the same field. Encrypting the string after filtering
inappropriate words is the obviously desired behaviour. In reverse order, the
profanity filter will be applied to an encrypted string and will not be able find any
profane language.

The logging and encryption combined are another example of interference type 3.
When Logging is executed first, the original string is logged; in reverse order the
encrypted string is logged.

5.2.3 Example Code

We now give an implementation of the aspects described earlier in this section
in the Composition Filters language. To be able to specify a small-sized and to-
the-point example, we have defined a number of so-called user-defined filter types.
Such filter types are implemented by the user, but are intended to have a reusable
nature. We merely describe the run-time behaviour of these filter types (i.e. no
actual run-time implementation exists of the actions associated with the filter
types used in the example).

Listing [5.1] shows the complete specification of the logging aspect. Worth men-
tioning is the use of filter-type Log. The result of this specification is that each
incoming message with name send to an instance of class Server is logged.

Similarly, Listing [5.2| shows the filter module specification of the other three as-
pects: authorisation, parent and encryption, that make use of filter-types Abort,
Parent and Encrypt, respectively.

At run-time, the used filter types are associated with filter actions “LogAction”,
“AbortAction”, “ParentAction” and “EncryptAction”; these are executed when
the filter accepts a message. All used filter types perform the default “Contin-
ueAction” when the filter rejects the message. This action is executed when the
filter rejects a message, and will continue the message to the next filter. If the
filter is last in line, the message will be dispatched afterwards.

Y UL i W N~

16
L7
18

19

5.2. Problem Definition

139

concern Logging {

filtermodule Logging {
inputfilters:
logging: Log = { [x.send] *.x }

}

superimposition {
filtermodules
classes = { x | ClassByName{ x, ’Server’ } };
superimposition
classes <— Logging;

Listing 5.1: Composition Filters source code of the Tracing aspect

filtermodule Authorisation {
externals
user: User = User.instance();
condition
isAllowed = user.isAllowed ();
inputfilters:
auth: Abort = { !isAllowed => [x.send] =*.x }

filtermodule Parent {
inputfilters
profanity: Parent = { [*.send] x.x }

}

filtermodule Encrypt {
inputfilters
encrypt: EncryptString = { [*.send] =*.x }

}

Listing 5.2: Composition Filters source code of the Authorisation aspect

140 Chapter 5. Analysing Aspect Interference on Shared Join Points

5.3 Approach to Aspect Interference Detection

In the previous section we have explained the problem of advice interference at
shared join points. In this section, we present our approach to verify that, given an
aspect-oriented specification, no interference occurs. The absence of interference
means that, at all join points, each execution order for the scheduled aspects
results in the same resulting state.

We propose to use simulation of all possible advice orderings at all shared join
points. We represent such a joinpoint (i.e. a run-time state where advices are
scheduled) as a graph (a so-called joinpoint graph), and use a graph-transformation
based operational semantics to simulate the execution of the aspect composition.

5.3.1 Analysis

We now explain the shape of the generated state space of simulating a join point
graph and explain the analysis of this state space for the detection of aspect
interference. When simulating the full execution space of a joinpoint graph and
the run-time semantics, we see two kinds of branching occur in this state space.

1. First, dynamic predicates — condition expressions and signature matches in
Composition Filters — are evaluated to true or false non-deterministically;
the transition system branches into a path where the predicate is true and
a path where the predicate is false. The number of different evaluations for
all signature matches and condition expressions is 2P, where p represents the
number of predicates.

2. Second, once all predicates are evaluated, the transition system branches
each time an advice (a filter module in CF) is picked from the pool of pending
advices. Each choice is represented by a distinct state (i.e. a graph). The
worst-case number of different orders (and paths) is a!, where a represents
the number of advices at the shared join point.

A generalised shape of the generated LTS is shown in figure[5.1} In AOP terminol-
ogy, the initial state represents a shadow joinpoint; it reflects a statically matched
join point. Branching occurs when a rule has multiple matchings in one graph or
when different rules match in the same graph. The branching above the dotted
horizontal line represents assigning values to the predicates that do not have a
value. The states on the dotted line represent all actual joinpoints for the shadow
joinpoint. As stated above, the number of paths to these states is 2¢, where ¢
represents the number of conditions.

5.3. Approach to Aspect Interference Detection 141

non-deterministic
evaluation
of conditions

non-deterministic
choice of
advice order

advice simulation

Figure 5.1: General shape of the LTS, with two predicates and two advices.

Below the dotted line, branching occurs when the first filter module is selected,
after which all filter modules are executed. The figure illustrates that for different
values of conditions, different shapes in the LTS can occur.

When all advice orders on a shared join point have been simulated, we can analyse
the composition of the advices by looking at the shape of the LTS. We base our
analysis on the shape of the actual joinpoint.

When advice actions are commutative — the order of execution does not affect
the resulting state — the execution traces of the different orders are confluent,
because the same state is automatically represented by the same “box” in the
LTS. The equivalence of states is based on an isomorphism check that is based
on labels, not on node identities. Confluence is visualised in the left-most and
right-most diamond shape in Figure [5.1

When the order of execution of a number of advices does not affect the result, we
can not immediately conclude that this is also the desired result. Imagine a log-
ging advice that logs an immutable copy of the (original) argument of a method,
and another advice that modifies the value of a mutable variable containing the
argument. Both orders of advice execution would log the original argument and
make the same change to the argument. In other words, the LTS would be con-
fluent. However, if the behaviour of the logging advice is documented as “logging
the value of the argument passed to the method body”, the combined behaviour is
not correct. The expectation is only satisfied when the argument is not changed.
Although we cannot be certain that a result from confluent orderings is the “ex-
pected” result, at least we are certain that the all orders of the advices yield the
same result. The problem in the scenario we just illustrated is caused by an as-
sumption that holds when the aspect is applied in isolation, but may not hold

142 Chapter 5. Analysing Aspect Interference on Shared Join Points

when composed with other aspects.

When advice units are not commutative, the order of execution affects the resulting
state and the execution of different advice orders will result in different final states.
This is illustrated in the two middle cases in Figure One of these states might
be the desired result, or both might be undesirable. In any case, we can conclude
that the advices interfere: the changes made to the state by one advice affects the
applicability of the other advice or the state change made by the other advice.
This definition of interference helps us understand when confluence can also occur
even though the advices interfere. The state change made by the first advice and
the effect of the first advice on the state change made by a second advice might
“accidentally” add up to an identical resulting state. However, by intuition we
believe this to occur only very rarely.

5.3.2 Implementation Requirements

For the simulation of advices expressed in Composition Filters (i.e. filter modules)
we use the operational semantics presented in Chapter |3} To be able to use this
semantics for our approach, and to illustrate this for the given example, we must
take the following preparations:

1. We generate graphs that represent one class, signatures of the methods de-
fined in this class, and all filtermodules that are superimposed on the class.
To represent a shadow joinpoint, we must add a representation of a method
call to an instance of this class. To represent all distinct method-calls, we use
the different selectors used in the filter modules for the name of the called
method. Also, we need to represent the instances of internals and externals.

2. After the previous step, the graph is an abstraction of the possible states of
the system when a shared joinpoint is reached. In particular, the abstraction
pertains to the value of condition expressions and signature matchings. For
interference analysis, we need to make this more concrete. In fact, to realise
the proposed LTS shape, the predicates are required to be evaluated before
executing the advices. Additional rules need to be specified for this pre-
evaluation.

3. To simulate the execution of the filtermodules in the proposed manner, we
need to specify rules for the non-deterministic scheduling of these filtermod-
ules.

4. The presented example uses user-defined filter types. To simulate the run-
time behaviour, we need to specify rules for the filter actions associated with
these filter-types. Because the graph is an abstraction of a run-time state,
we also specify the behaviour of the filters in an abstract way.

5.4. Extended Composition Filters Semantics 143

In the next Section we show the additional rules needed to apply our verification
to the presented example. Then, in Section [5.5] we show our experimentation
results.

5.4 Extended Composition Filters Semantics

We now give the additional rules needed as discussed in the previous section. The
rules for the user-defined filter-types are specifically needed for the example; the
other rules merely extend the semantics resulting in an implementation for our
verification approach.

5.4.1 Message Creation

We use a Composition Filter specificiation to generate a graph for each class that is
enhanced with filtermodules. This graph then represents the class, the signatures
of methods defined in the class, and the syntax of the filter modules. The latter
is consistent with the type-graph shown in Figure |3.2

To simulate all distinctly recognised messages to an instance of such a class, we
add specific frames to this graph. Each frame corresponds to a level in a call-stack.
When a new frame is created, the creating frame has to wait for the created frame
to finish execution. For simulation of the filtering mechanism at a single joinpoint
we need three frames, namely (1) a frame that is executing the code where the
message originates (i.e., with a method-call statement), (2) a frame for executing
the called method, and (3) a frame for filtering the message. The name of the called
method is initialised to any selector used in the filter modules. This selector can
also be “*”; the graph then represents all message that are not explicitly referenced
by the filter modules. If the chosen selector matches a signature in the class, this
signature is used to initialise the arguments of the method-call.

The resulting graphs are the start graphs of our simulation. The graphs coincide
with the type-graphs in Figure and We briefly discuss the rules that we
have specified to generate these graphs:

e The rule in Figure[5.2] creates the three frames that are required to represent
the message. The filtered MethodFrame is created with a name-less Signature,
i.e. no selector is specified yet. Also, the target object is created.

e The rule in Figure [5.3|initialises the name of the method-call as any selector
that is used in a filter module.

144 Chapter 5. Analysing Aspect Interference on Shared Join Points

Kparent"‘\
ey Frarne i FilterFrame
e o —

M.ethodFrame Erems
init

self ik I

= Frame target
e sy .
: .) ;
Object Object : H pEnding
......

inztanceof

name filtermodule Filtertdodule

Figure 5.2: Rule for Frame Creation

ethodFrame [==signature name
sign_ature

= Signature = {Mamehdatch|SubstPart;

Annnnunnr

selectar

Figure 5.3: Rule for Selector Creation

e The rule in Figure[5.4) replaces the created signature with an equally named
signature in the target class. If no such signature is found (i.e. for the “*”
selector), nothing happens.

e The rule in Figure [5.5] creates values for the parameters of the signature.
The default signature has no arguments.

e The rule in Figure [5.6] creates values for each of the internals and externals
that are referenced in the filter modules.

The graphs resulting from applying the rules above represent shadow join points,
and are the start graph of the simulation of filter module execution.

5.4.2 Predicate Evaluation

The start graph of the simulation represents an abstraction of the actual run-
time states where filter modules are triggered. This abstraction lies in absence
of the part of the state that is used by expressions in the filter modules. In
the original CF semantics (see Chapter [3]), condition expressions and signature
matches are evaluation on the fly (i.e. when the program reaches the expression).
The abstraction then causes non-determinism during the execution of the filter

5.4. Extended Composition Filters Semantics 145

target hethodFrame

instanceof sign:ature
|
sSanatls Ve atyre |
Rty
o '
\“|\ 1
= name

sighature
Figure 5.4: Rule for Signature Resolving

hdethodFrame sighature
',
sy
Al A

Figure 5.5: Rule for Argument Initialisation

FilterFrame

self
. Hing
Class €instanceof i) =
ObJECt g P - 3
filterrnodule war

¥

FilterModule

-":ullllllllll
|||||||at||||||||||§ varslo

Tinnmmnn

T

Figure 5.6: Rule for Context Initialisation

146 Chapter 5. Analysing Aspect Interference on Shared Join Points

i-lllllllllllll:
= AuxSlot £ ;Fahf
IIIIIIIIIII}I“ E E
‘daux', "‘at, = E |I“aux"
FilterFrame CondExpr FiltkerFrame
auy, at aux)
id
AuxSlot AuxSlot
value = true @ value = false @
(a) PreCondExprTrue (b) PreCondExprFalse

Figure 5.7: Early CondExpr Evaluation

?‘IIIIIIIII]:
1, LLLRLLRRLENISS
! s, E L
BN h,’ H
;

aux .
o

e,

at,
s’
= -
at id
g s id
ALpSlot ‘ AuxSlot
value = true @ value = false

(a) PreSigMatchTrue (b) PreSigMatchFalse

alls

Figure 5.8: Early SigMatch Evaluation

modules, due to the fact that the rules for evaluating the expression to true and
false are both applied to the same graph.

To compare the different executions of filter modules at a specific (non-abstract)
run-time state, we must first evaluate condition expressions and signature matches,
so-that the execution of a filter-module becomes deterministic.

To achieve this, rules are added that resolve condition expressions and signature
matches before the filter modules are executed. The rules for the CondExpr expres-
sions are shown in Figure [5.7 one rule for an evaluation to true and one rule for
an evaluation to false. Similarly, the rules for the SigMatch are shown in Figure
Both rules can be applied to the same graph, causing non-determinism and
creating different concrete possibilities for an abstraction.

The difference with the rules in Chapter [3]is that there is no program counter
required for the evaluation of the expressions. However, now that these expressions
are evaluated before the filter modules are executed, we need an additional rule
to skip expressions that have been evaluated earlier. This rule is shown in Figure
0.9

5.4. Extended Composition Filters Semantics 147

value—)o

ALl at

""" p - - - - 3 FlowElement

flow
FlowElament

(a) Skip
Figure 5.9: The Skip Rule

5.4.3 Non-Deterministic Scheduling of Filtermodules

Figure [5.10| shows the rules that are involved in the scheduling of filter modules.
The following points are noteworthy:

e The rule in Figure selects any of the filter modules that must be
executed at the join point.

e The rule in Figure detects when the execution of a filter modules has
ended, and adjusts the graph so that the previous rule can be applied again.

e The rule in Figure dispatches the message when there are no more
filter modules left to execute.

5.4.4 Filter Actions of the Example

For simulating the example presented in Section we must extend the CF se-
mantics with rules for the user-defined filter types, namely Abort, Log, Encrypt,
and Parent. We now describe these rules.

e The rule specifying the FilterAction Log is displayed in Figure[5.11] It creates
a logged edge to selector and arguments of the message.

e Figure [5.12) shows the production rule of the FilterAction Abort. The filter
frame is removed, ending the filter evaluation. The method frame — cur-
rently in the filtering state — is updated to the abort state, to indicate
that the message was aborted.

e Figure shows the specification of the Encrypt action. All arguments of
type “String” are replaced with new objects. To indicate that these objects

148 Chapter 5. Analysing Aspect Interference on Shared Join Points

Hig
Frame - parent— FilterFrame """'DC"% =
tethadFrame - b
filtering .l

pendlng

FlowElement flaa FllterModuIe name—).

(a) FilterModuleSelect

---pc--e:-cit Filtertodule

(b) FilterModuleEnd

. FilterFrame | :
~~filers- - - 4 Frame i = - —aux- -3 AuxSlot
\

at
N
A

(c) Dispatch
Figure 5.10: Filter Modules Scheduling Rules.

are encrypted versions of the original objects, it adds encrypted edges be-
tween the old and new objects. The rule for the Parent action (Figure[5.14)
is similar, but adds a parental edge between the objects.

DC*(—FIUWEIBment flow—‘

FilterFrame GGREETECES R » :;It;r:fi"ol_nog"
T hselector -
| d
filters target nase

MethodFrame m

logged

Figure 5.11: Rule specifying the Log action

The rules illustrate that we can specify the behaviour of the filter actions in an
abstract way. We merely need an abstract representation of the effect of advice

5.4. Extended Composition Filters Semantics 149

——————————

| FilterFrame ! ______ o - m - oo Filteraction
“““ Tt name = "Abort"

fitering =~} abort o kS
i I.ﬁuxSIot ot
o {1 e

Figure 5.12: Rule specifying the Abort action

ale FlowElerment fIDW—I
FilterFrame | - - - -~ ---- b E FilterAc_ti"on .
= - namme = "Encrypt

targ t

Y

filters

MethodFrame
Class
ﬁt_"_vame _-W—lnstanceof TG = TS

value E encypt nstanceof

Figure 5.13: Rule specifying the Encrypt action

application on the represented part of the state, such that different states can
be identified. For the logging action, for example, we only care about what is
logged, and therefore only that information determines the resulting state. The
encryption and parental actions do not actually represent modified strings, but
rather encode a relationship between the new and the old values.

150 Chapter 5. Analysing Aspect Interference on Shared Join Points

p FlowElement HOW—‘
S S | Filterfiction

- - name = "Parental"
. selector

filters 'target

¥ Y
| MethodFrame | | Object|
S

Al RS 1 gt

at &t
. L . Class
Rl SIOl - - - - value: - - _: Qe netenceot

valle parental nstanceof

Figure 5.14: Rule specifying the Parental action

5.5 Experimentation

We now present the results of our interference detection experiments with the
example presented in Section First we show some of the generated transition
systems and give an intuition of the analysis. Then we give a detailed report of
data gathered from an implementation that automates the approach.

5.5.1 Generated State Spaces

Figure shows the generated state space for a shared join point with the
logging and encryption aspects. The two paths are not confluent, since the Log
action tags a different string; the advices interfere. Figure shows the gener-
ated state space for a shared join point with the Authorisation and ProfanityFilter
aspects. In the first branching, different values are assigned to the condition ex-
pression of the authorisation advice, resulting in two actual join points. Then, on
the left side (where the condition is true), the branches do not merge because the
authorisation advice aborts the flow either before or after the profanity filter has
executed, resulting in different final states. On the right side (where the condition
is false), the condition of the authorisation advice fails, so that it does not abort,
in which case the advices do not interfere.

Figure shows the generated state space for all our four aspects, which is a bit
harder to analyse visually. The first branching again represents the evaluation of
the condition expression in the Authorisation aspect. We can see that more than
one final state can be reached via the 24 (a!, where a = 4) different execution
orders for each of the two actual join points. The figure can be used to analyse

5.5. Experimentation 151

the possible executions of the join point.

A advice TRUE LN FALSE condition
SelectFilterModule (‘EncryptModdodul ! Condition Truel ConditionFalse ’
lectFilter Module ["EncryptModiadul choice assignment
ES ES
\ advice
. . “AuthModu
CondvlmEwpvessmdlllor:fxplesslol W choice
B
Branch(Branch(. it it i
Condition Opera Condition Operator Branch(Branch(Branch(Branch()
[s:4] 513 E;wﬂ 512
NameMatchingName MatchingParttru Condition Operatoondition Operatodition Operator Branch()
* simulation of - - E‘;fﬂ *) §|mulat|9n of
Branch(Branch(first advice first advice
Substitution PartSubstitutionPart Branch(Branch(BrancFilterModule[ParentalModul
Branch(Branch(. it ituti
6]
Encryptiction LogAetion(Branch(Branch(Branch(Branch()
Ge] =
Filter Module ["LogModule [*Encrypt Modul adv!ce i i i it
choice 2 2 L
Ge] [+ (=] T
. . i advice
ConditionExpre-Condition Expressior [choice
Branch(. Branch(ConditionExp ConditionExpressioi Branch()
Condition Operatoondition Operator Branch(Branch(SubstitutionPar simulation of
W N2 W second
@ 525 4 advice
NameMatching PartruatchingPart-tru Condition Operator Branch(Branch()
simulation of
Branch(Branch(second i i
advice
30 552 v
Substitution PartSubstitution Part Branch(FilterMcFilterModuledas
ol g
Branch(, Branch(substiutionPart 4 No Interference
532
LogAation| Encryptaation Branch(,
53§
Filter ModuleasFilter Moduledas AbortAction

~ i

Interference

4 4 Interference
(a) Logging and Encrytion (b) Authorisation and ProfanityFilter

Figure 5.15: Generated transition systems

5.5.2 Analysis Report

We now give a detailed report of our experiment. We have implemented a tool
that performs the analysis automatically. An example output of the tool is shown
in Listing [5.3] For each run-time simulation it performs, it shows the target and

152 Chapter 5. Analysing Aspect Interference on Shared Join Points

f e e e

R I IR Aok So i)
(et ety Aty et aty gt

SARECIECE So R SoR Sk S RCR o)

A e (et (R R

e L L

aimimemimini

PRECI AR Eoiei il S Jo
L atpatieativatin g lyatisaty

[
[=
=

Figure 5.16: Generated transition system of the example program with four as-
pects

selector of the encoded message (i.e. the type of the target and the name of the
method-call). Then it reports details of the generated LTS, such as the number
of states and transitions, and the number of final states. For each conflict it
detects, it gives a summary of the predicate assignments at the actual run-time
state, and then shows the counter example: the orders of the execution filter
modules and the (different) final states. Finally, it reports the total time elapsed
for the analysis. The example output reports one conflict that corresponds to the
interference we have shown in Figure It indicates that the conflict appears
when the condition expression in the first filter element (0) of the auth filter in
the Authorisation() filter module is true. This is followed by the counter example:
the filter module sequences that are executed from this state, and the final states
of these sequences.

Table[5.1]shows a summary of the output of running the analysis tool with different
compositions of aspects. We denote the aspects with L,P,E /A for Log, Parent,
Encrypt and Authorisation, respectively. We give the number of nodes and edges in

19

5.5. Experimentation 153

+++ SIMULATION RESULT 44+

message target: ”grasstest.Server”
message selector: ”send”

nodes: 63

edges: 198

rrrrrrrrrrrrrrrrrrrrrrr T
4+ grammar: runtime

+ states:75

+ transitions:80

+ final states:3

+ open states:0

%+ CONFLICT

x*xx STATE SUMMARY:

— 7 AuthorisationConcern. Authorisation .auth.0.CondExpr” = true
#x+x TRACES:

+ s6 >> " Authorisation” >> s46

+ s6 >> ”"Parent” >> " Authorisation” >> s75

ok ok ok ok ok K kK R ko K oK Kk

Fin. (0:3.2345s)

Listing 5.3: Analysis report for Authorisation and Parent

the start graph, the number of states, final states and transitions in the generated
LTS, the elapsed time, and the number of conflicts (counter examples). We only
give the results for the analysis of send messages to an instance of class Server.
Other messages (such as *) do not result in interference.

The number of conflicts is limited to the number of actual joinpoints in the graph,
namely 2P, where p is the number of predicates (condition expressions and sig-
nature matches). In the example aspects, only the authorisation aspect has a
condition. The rows with aspect A therefore can have 2 conflicts, and have signifi-
cantly more states compared to the compositions with an equal number of aspects
that have no predicates and thus can have a maximum of one conflict.

For illustrational purposes, we take a closer look at the analysis report of the
composition of all four aspects. The found conflicts are shown in Listing

The thing we want to point out is that the report does not show all traces that lead
to different states. For example, the first conflict only shows the execution orders
that start with the Authorisation aspect. Since this aspect does not do anything
when the condition is false, any other position of the Authorisation aspect gives
the same final state. The analyser reports each final state only once, and only one
execution order to reach this final state.

(1 QSN

6

-3

16

18

29

30
31

154 Chapter 5. Analysing Aspect Interference on Shared Join Points

x% CONFLICT
*x*x STATE SUMMARY:

— 7 AuthorizationConcern. Authorisation! classes.log.0.CondExpr”

= false

x+% TRACES:

+ s23 >> 7 Authorisation” >> ”Logging” >> ”"Encrypt” >> ”Parent”
>> 5785

+ $23 >> ” Authorisation” >> ”Logging” >> ”Parent” >> ”Encrypt”
>> s786

+ 23 >> ” Authorisation” >> ”Parent” >> ”Encrypt” >> ”Logging”
>> s783

+ s23 >> 7 Authorisation” >> ”Parent” >> ”Logging” >> "Encrypt”
>> s784

4+ $23 >> ” Authorisation” >> ”Encrypt” >> ”Parent” >> ”Logging”
>> s781

+ s23 >> ”Authorisation” >> ”Encrypt” >> ”Logging” >> ”Parent”
>> s782

s%% CONFLICT

sxx% STATE SUMMARY:

— 7 AuthorizationConcern. Authorisation!classes.log.0.CondExpr”
= true

x+% TRACES:

+ s24 >> ”Parent” >> ”Logging” >> ” Authorisation” >> s619

+ s24 >> "Logging” >> ”Parent” >> ” Authorisation” >> s623

+ s24 >> ”"Encrypt” >> ”Logging” >> ”Parent” >> ” Authorisation”
>> s794

+ s24 >> ”Parent” >> ”"Encrypt” >> " Authorisation” >> s617

+ s24 >> ”"Logging” >> ”Encrypt” >> ” Authorisation” >> s621

+ s24 >> ”Parent” >> ”Logging” >> ”"Encrypt” >> ” Authorisation”
>> 5796

+ s24 >> ”"Encrypt” >> ”Parent” >> ”Logging” >> ” Authorisation”
>> s793

+ s24 >> ”"Encrypt” >> ”Logging” >> ” Authorisation” >> s615

+ s24 >> "Parent” >> ” Authorisation” >> s319

+ s24 >> 7 Authorisation” >> s105

+ s24 >> "Encrypt” >> ”Parent” >> ” Authorisation” >> s613

+ s24 >> ”Parent” >> ”Encrypt” >> ”Logging” >> ” Authorisation”
>> s795

+ s24 >> ”Logging” >> ”Encrypt” >> ”Parent” >> ” Authorisation”
>> 5797

+ s24 >> " Logging” >> ”Parent” >> ”"Encrypt” >> ” Authorisation”
>> 5798

+ s24 >> ”Logging” >> ” Authorisation” >> s322
+ s24 >> "Encrypt” >> ” Authorisation” >> s316

Listing 5.4: Conflicts for all four aspects.

5.6. Evaluation of the Approach 155

2 z £

= S| = |2

2| % 3 B E |

LA 62 | 198 | 75(3) | 80 | 378 | 1
LP 60 | 196 | 50 (2) | 50 | 2.95 | 1
LE 60 | 196 | 50 (2) | 50 | 297 | 1
AP 63 | 198 | 75(3) | 80 | 323 | 1
AE 63 | 198 | 75(3) | 80 | 3.30 | 1
PE 59 | 196 | 50 (2) | 50 | 292 | 1
LAP || 82 | 280 | 232(7) | 251 | 3.95 | 2
LEP || 79 | 279 | 179 (6) | 183 | 4.78 | 1
LAE || 82 | 280 | 232(7) | 251 | 4.15 | 2
APE 82 280 232 (7) 251 4.62 1
LAPE || 101 | 362 | 798 (22) | 863 | 10.13 | 2

Table 5.1: Analysis results of all possible compositions.

5.6 Evaluation of the Approach

In this section we evaluate the approach for a number of properties that we consider
important.

5.6.1 Detection of Interference

The approach allows abstractly specifying the behaviour of advice actions, so
that only relevant behaviour is incorporated. Of course this also means that the
specification can be over-abstracted causing certain problems to be undetectable.

Although we cannot guarantee that a composition of aspects is free of interference,
we can warn the user (with certainty) for interference in case of a non-confluent
result. When the result is confluent the advices are either free of interference or
coincidentally cause the same wrong result with all orders of execution (which
we consider very rare). We believe that when advices are commutative for ev-
ery combination of condition values, the shared join point is highly likely free of
interference.

The visual nature of the result — the LTS — can help in understanding the
composition of advice, even as simply as seeing different shapes under different
condition values. This can help in understanding if a result is desirable or help
debugging a problem.

156 Chapter 5. Analysing Aspect Interference on Shared Join Points

The approach allows to distinguish results for different run-time states, by tailoring
the conditional assignments. Some false positives (detection of interference that
will never actually happen) can occur when certain combinations of condition
values (i.e. run-time states) are never found when the program is executed. Again,
the visual nature of the LTS can help in analysing the different scenarios.

5.6.2 Modularity

Modularity in the context of verification of aspect-oriented software development
typically means that it is possible to analyse and verify aspects and aspect com-
positions independently of a base system. Our approach is modular in such a
way that the source-code of the base system is merely used to extract shared join
points. We have shown that our approach can detect aspect interference by simu-
lation of advices alone. When the base system’s source code is not available, it is
possible to simulate every combination of two advices. This can, however, lead to
false negatives and false positives for actual base programs, when the advices are
never composed at shared join points.

5.6.3 Usability

Since the base system is not simulated, our approach requires only the advice
language to be specified formally using graph-transformation rules. For the Com-
position Filters language this is a reasonable task, although we have not included
Meta filters. Such filters call a method specified in the base-language. To incor-
porate analysis of meta-filters, we would not only have to specify base language
semantics, but also have to incorporate a larger subset of the base system’s run-
time state. Determining this subset might be a difficult task.

CF comes with a base set of filter types. These filter types are argued to be useful
for a large number of advice specifications, and are therefore elements of reuse.
The specification of the language as described in this Chapter can already be used
to analyse a large number of CF programs, namely all programs that only use
default filter types.

However, custom filter types can be added to the Composition Filters language.
In this case, either these custom types can be neglected during analysis, or the
developer could specify the behaviour as a graph production rule to be able to
include the custom filter type in the analysis.

In fact, the example presented in this chapter is based on the use of custom filter
types (Log, Abort, Parent, and Encrypt). However, this was done just to create a
simple and small yet interesting example.

5.6. Evaluation of the Approach 157

5.6.4 Scalability

The complexity of our analysis can be broken into different phases.

The first phase consists of the generation of the graphs contain a class and number
of advices. The complexity of this phase is of linear order to the number of classes
(C) that are enhanced with more then one aspect.

The second phase is the phase that adds a message to the graphs, with a complexity
that is linear to the number of selectors (s) that are referenced in the filtermodules.

The complexity of the runtime simulationa can be divided into two parts. In the
first part, the different actual joinpoint graphs are generated, which is a function
of the number of different dynamic prediates (p) used in the filter modules. In
the second part the execution of all different filtermodule orders at each joinpoint
are simulated. The complexity is a!, where a is the number of filter modules.
The complexity of the simulation is of order 2P x a! per analysed join point,
which expresses the number of paths. The number of conditions will most likely
remain small compared to the number of advices, since conditions in pointcuts
are commonly known to be a run-time performance bottle-neck. In future work
(Section we propose a different simulation strategy that reduces the size of
the generated transition system.

Simulation of a single filter takes approximately ten rule applications. In a (bad-
case) scenario where every filter module contains one filter and one condition
expression, the size of the state space approaches 10 x 2% x a!. GROOVE is able
to generate state spaces with size up to an order of 10° in a timescale of seconds.
This allows us to simulate up to around six advices in the assumed scenario (one
condition per filter module). Although the occurrence of shared join points is not
rare, finding shared join points of six or more advices will not be a common case.

The complexity of the entire analysis of a CF program is of the order C' x s x 2P x a!.

5.6.5 Tool support

The approach has been implemented as a Compose* compiler module, which is a
compile-time and run-time implementation of the Composition Filters language.
Compose* is available for both the Java and .NET platform. The implementation
consists of the generation of program graphs for all classes with more then one fil-
termodule. The GROOVE API is then called to invoke different graph production
systems, namely to:

e add control flow information to the graph (see Chapter ;

e generate the different shadow joinpoint graphs as described in Section [5.4.1}

158 Chapter 5. Analysing Aspect Interference on Shared Join Points

e generate the LTS representing the executions of the shadow joinpoint, as
illustrated in Section [5.5)

Although visually presented in this chapter, the analysis of the LTS is done au-
tomatically on the corresponding data structure. Output of this analysis is illus-
trated in Section [5.5] The tool can optionally show a viewer of the LTS when it
detects interference.

The tool has also been integrated into the Common Aspect Proof Environment
(CAPE) [DKO0G6], a framework for aspect verification and analysis tools and mod-
ules over various aspect languages.

5.7 Conclusions

In this section, we discuss related work, future work, and the contributions of the
work described in this chapter.

5.7.1 Related Work

A lot of work has been done in the area that investigates the problems that can
occur when aspects are composed. We try to discuss the ones closely related to
our approach.

Douence at al. [DFS02] describe a framework to identify overlapping join points
and detect possible aspect interference. The abstract formalism can be a basis for
future analysis tools, but these have yet to be implemented.

Diurr et al. [DSBAOS] propose a semantic conflict detection model for Composition
Filters. This model translates the semantics of filter action to operations on re-
sources. The desired behaviour can be specified by means of patterns of operations
on a resource, either being a conflict or a requirement. To be able to detect aspect
interference, a pattern must exist that can identify the faulty execution. However,
the abstraction level of the resource-operation model from the exact behaviour is
quite high. Depending on the kind of the interference, it might not be possible to
describe the behaviour of the filters on this level such that it is still possible to
detect the problem.

Pawlak et al. [PDS05] present a language called CompAr, which allows the pro-
grammer to abstractly define an execution domain, the advice semantics and the
execution constraints of around advices in order to check if the execution con-
straints are fulfilled when the aspects share a join point. The difference with our
approach is that the aspects need to be specified in another language in order to

5.7. Conclusions 159

be analysed whereas our approach uses the aspect specification directly (once the
aspect language has been specified once).

Havinga et al. [HNBAOQ7| present a graph-based approach to detect composition
conflicts related to introductions. These introductions are translated to graph-
transformation rules, which are applied to a graph representing the static structure
of the program. After applying the transformations, the resulting structure is
analysed to detect structural conflicts caused by aspects or aspect compositions.

Lagaisse et al. [LJDO04] stress the need to express which modules may use and
affect each other in the module composition process. Artifacts can be equipped
with contracts that specify the provided functionality and dependencies on other
components. For aspects, however, the accepted notion of a contract is no longer
sufficient. They propose that aspects require to obey the contractual obligations
of the components, such as not allowing breaking scope qualifiers (public/pri-
vate/protected). They call breaking a contract uncontrolled semantic interference.
So-called aspect integration contracts are introduced, which specify the permit-
ted interference between an aspect and a base component. Essentially, the work
focuses on aspects interfering with the composition of the base system, where our
approach focusses on interference among aspects.

Zhang et al [ZCvdBGO7] propose to reduce aspect interference problems at a higher
level of abstraction — before proceeding to the implementation level — to enhance
the reusability of the aspects. They describe how precedence can be declared at
the modelling level. Based on precedence declarations, the underlying composition
mechanism derives an appropriate weaving and execution order automatically.
The work does not concentrate on reasoning about the correctness of a system after
composing multiple aspects simultaneously, which is the focus of our approach.

Rinard et al. [RSB04] propose a classification for aspects interacting with methods.
The work also mentions that the same classification can be used between aspects.
This classification proposes aspects to have interfering scopes when both aspects
write to the same field. The classification system is supported by analysis tools
that identify classes of interactions and hence help developers to detect potentially
undesired interactions. It is left to the user to decide what is problematic and what
is not.

Katz [Kat06] extends the aspect classification from [SKO03| and, for each cate-
gory of aspects, classes of properties preserved by the aspects are defined. Katz
and Katz [KKO08] define semantic interference between aspect and propose an in-
cremental way of checking whether aspect interfere. The technique is based on
model checking and requires a formal “assume-guarantee” specification of the as-
pects. In [KK09] a modular verification technique is proposed for one of the above
mentioned categories, namely strongly-invasive.

Storzer at al [SF06)] also identify the problem of non-commutative advices at shared

160 Chapter 5. Analysing Aspect Interference on Shared Join Points

join points, the so-called advice precedence problem. A mechanism is proposed to
detect relevant undefined advice precedence, by detecting common fields used in
read and write operations for advice that share join points. In our approach, we
also recognise the problem of interference based on read and write operations on
fields. However, this does not imply that the advice are interfering. It is possible
that two advices make an orthogonal change to the same field. Simulation will
indicate whether the operations are orthogonal and commutative or not.

Goldman et al. [GKQT7] present a modular approach to verify correctness of an
aspect relative to a formal specification. The approach is based on model checking
using linear temporal logic. We only look at the actual state change of aspects
to detect interference, and cannot reason about the intended behaviour. Kniesel
[Kni09] presents a analysis method for weaving interaction and interference. It is
based on a logical model of aspects, which specifies conditions and operations on
program elements. There is some overlap between their approach and ours, but
their approach can not detect run-time data interference between aspects.

5.7.2 Future Work

Applicability to other Aspect Languages

Composition Filters has proved itself to be a suitable language for our approach,
due to the nature of the advice language. In CF, aspects are be specified in a
base language-independent way. The advice language itself is not an extension of
the base language, but instead consists of a fixed set of filter-types. Also, advice
does not call base-language behaviour but is self-containing. Therefore, simulation
of advice does not involve simulation of part of the base-system at all: only the
semantics of the filtering mechanism and the fixed set of filter-types have to be
specified.

Two issues have to be dealt with in applying the approach to other languages.

First, many other aspect-oriented languages have an advice language that is a vari-
ant of the base language. Specifying such an advice language is possible, but is a
much larger task than specifying the small CF language. The entire base-language
needs to be specified using graph transformation rules. However, applying the ap-
proach to a simplified base-language with proceed may already be interesting. As
a matter of fact, the work presented in Chapter [d] embodies the application of the
approach to the Common Aspect Semantic Base (CASB) [DDE0S], a formal model
of Featherweight Java with assignments and Featherweight AspectJ. The work re-
sulted in a graph production system for simulation of entire programs written in
this language, not just joinpoints.

Second, languages like AspectJ employ more comprehensive join point models that

5.7. Conclusions 161

allow interception of assignments, constructor calls, static initialization, throwing
exceptions, etc. In our approach, the interception mechanism is modelled as a
change of the method dispatch mechanism, which is based on method frames. This
is feasible because, in the Composition Filters model, the only kind of join points
are messages (or method calls) between objects. For more fine-grained join point
models, a different graph representation is needed, as not only a run-time process is
changed, but in essence any instruction can be intercepted. Automatic join point
graph generation becomes a lot more complicated. However, proxy/interceptor
based languages such as Spring AOP [JHA™] are becoming more and more popular.
These languages typically only intercept messages between objects. Therefore, it
is likely that such joinpoints can be represented as presented in this paper —
using frames for those messages — since the joinpoint models of these languages
are similar to that of CF.

Using Classifications for Optimisation

Classification of aspects helps in understanding the behaviour of aspects. In
[SKO03], a classification of aspects was proposed as spectative, regulative and inva-
sive types. In [Kat06] these categories of aspects are extended and specified in a
more precise way. Also, similar aspect classifications are in [RSB04] and [CL02].
The classification presented in [SK03] can be summarized as follows:

e Spectative aspects produce side-effects orthogonal to the base system. They
do not change the base system.

e Regulatory aspects change or abort the control flow of the system.

e Invasive aspects change variables in the system.

These classifications can be easily mapped to the causes for interference at shared
join points that were introduced in Section Interference between aspects can
occur with different combinations of aspect types; interaction of a regulatory or
invasive advice and any other type can result in interference. Using this knowledge,
we could optimise our approach by skipping join points that are shared by only
spectative aspects.

Simulation Strategies

Currently, our approach employs a simulation strategy where unknown fields —
needed by an advice — are evaluated before simulating the advice. The advantage of
this is that it allows to visually detect interference by looking at confluence of traces
that have branched after these fields are evaluated (i.e. shadow join points versus

162 Chapter 5. Analysing Aspect Interference on Shared Join Points

actual join points). The disadvantage is that the advice that uses a condition
might not be reached due to a preceding advice aborting the message, such that
unnecessary states are created. Traces which involve variables whose values are
not going to be read or evaluated (because message abortion occurs before the
respective aspect are reached) are essentially equivalent — independent of the
values of those variables. An optimization w.r.t. the size of the state-space (and
thus the simulation time) would be to lazily assign values to these variables (i.e.
when the program counter has reached the actual use of a variable). This however,
makes the visual detection of interference hardly feasible and requires detection of
interference to be automated to provide understandable analysis results.

In future work, we would like to prove that commutativity is also compositional:
if all possible compositions of two aspects from a set of aspects (i.e. for ay,as,as
this means the composition of (1) a; and as, (2) az, and as, and (3) a1 and ag)
are free of interference, then the total composition (i.e. ai,as and ag) is also free
of interference. Instead of simulating all possible advice orders on the shared join
points that occur in a given program, this allows to verify just every couple of
aspects and will greatly reduce the complexity, especially since this verification
can be done once and for all for a given set of aspects (and any base system).
One could verify a set of aspects to be free of interference by merely analysing
every combination of two aspects.

5.7.3 Contribution

In this chapter we present a novel approach to detect aspect interference at shared
join points. We use the graph transformation-based Composition Filters semantics
presented in Chapter 3] By modelling the specification of aspects and a join point
as a graph, we can simulate the execution of the aspects, resulting in a state space
of the execution of the join point.

By evaluating the expressions in the advices that depend on the base program and
run-time state in any possible way, we can create graph representations for every
possible join point; thereby, we can represent the executions of the advices for all
join points they apply to in the state space.

Simulating different advice orders allows us to detect aspect interference by analy-
sing whether or not aspects are commutative — whether the order of advice execu-
tion at a shared join point affects the result — by analysing confluence of execution
paths for different orders in the state space.

The analysis of aspects is done independently of the base system, making the
approach more scalable. Once the language semantics supports random advice
scheduling, no additional specification is required, making the approach very prac-
tical. The approach has been implemented for the Composition Filters language

5.7. Conclusions 163

but the approach in general is applicable also to other aspect-oriented languages.
We have explained the implications of implementing the approach for languages
like AspectJ.

Chapter 6

Verification of Dynamic
Constraints

6.1 Introduction

Aspect-oriented programming introduces new composition methods of modules
that may complicate the ability of a developer to comprehend the composed be-
haviour. The obliviousness property of aspect may cause developers to even be
un-aware of the existence of aspects. We feel that this increases the need for
verification.

System verification aims at verifying whether a system satisfies a set of require-
ments. Formal verification techniques provide means to determine whether a sys-
tem is correct with respect to a set of requirements, often called properties, based
on a model of the system. One such technique is model checking, where the central
idea is to verify all possible executions of a model of the system and check whether
they satisfy the required properties.

Model checking is based on a modal extension of propositional logic. The proper-
ties are specified on the base level by propositions that are satisfied by a subset of
the model being checked. The information in each of the states is abstracted to
the subset of properties that is satisfied there. Only the information remains that
is considered interesting for verification. On top of that we define a modal logic,
in which the properties of the lower level are treated as propositions.

165

166 Chapter 6. Verification of Dynamic Constraints

There are, however, system properties that are relevant to the correctness of a
system and yet cannot be expressed in this two-layered setup. Typically, these
are properties where the behaviour of individual entities over time is at issue. It
therefore involves tracking individual objects between states (i.e. over time).

In this chapter, we illustrate a mechanism for the verification of such properties of
systems by means of an example. This example, that we will be using throughout
this chapter, involves the observer pattern [GHJV95] and involves the property
”all and only the registered observers at the time of a state change receive a notifi-
cation of the new state”. The time between identifying the observers that require
notification and the notification itself leaves existing model checking techniques
unsuitable.

Concurrency

This property to be invalidated requires that an observer is added or removed
during the execution of the notification. This typically only occurs in concurrent
systems. In fact, in concurrent systems, the state of an object may change un-
expectedly (by another thread), whereas in linear execution it is much easier to
foresee the possible states of the execution. Therefore, we consider our verification
mechanism to be typically suitable for concurrent systems.

Aspect-oriented programming

When considering the use of aspect-oriented programming, one may implement
the observer pattern using either the object-oriented or aspect-oriented language
features. In fact, it may even occur that the implementation ”evolves” from OOP
to AOP during the development life-cycle. We will illustrate our problem for both
paradigms and consider it important that our verification approach can handle
such evolution.

We have now identified the following requirements:

e The approach should work for implementations using either object-oriented
programming and aspect-oriented programming (Java and AspectJ).

e It should be possible to express dynamic (modal) properties, that express
requirements of how the system behaves.

e Property definitions should not be impacted by implementation choices; this
means that when implementation changes — even from using Java to using
AspectJ — it should take less or no effort to reuse the definitions of the
properties that need to be verified.

6.2. Motivation by Example: the Observer Pattern 167

We define a run-time semantics of Java and AspectJ, based on a common run-time
state representation. This semantics is specified using graph transformation rules.
Furthermore, predicates are specified as additional rules that query the graphs but
do not change the model in any way. The use of graphs and graph transformation
to represent states, allows us to add information to the graphs for the purpose of
tracking individual objects; this information is then used by predicate-rules. We
use a addition set of rules to initialise the system with a certain number of threads
and a number of random actions to be executed per thread, thereby executing
possible execution scenarios.

This chapter is organised as follows. In the next section, we illustrate the problem
by an example: the observer pattern. In Section we explain our approach. In
Section [6.4] we give the semantics of Java and AspectJ required for the approach,
and in Section we explain how we verify the example problem. In section [6.7
we give an evaluation of our approach. In Section we discuss related work,
future work and the contributions of the work presented in this chapter.

6.2 Motivation by Example: the Observer Pattern

In this section, we motivate the work presented in this chapter by illustrating the
problem using the well-known observer pattern as example. We start by explaining
the intention of the observer pattern. Then we show problems that can arise when
using the observer pattern; first using Java, then with AspectJ.

The intention of the Observer pattern is to ”define a one-to-many dependency
between objects so that when one object changes state, all its dependents are
notified and updated automatically” ([GHJIV95]). The dependent are the so-called
observers, whereas the single object is often referred to as the subject. In general,
any implementation of the pattern must contain the following features:

o Identify the subject and observer roles;
e Maintain a mapping between subjects and observers;
e Capture state changes in the subject;

e Implement update logic: notify observers when a subject’s state has changed

6.2.1 The Observer Pattern in Java

In Listing 6.1} a very simple observer pattern implementation in Java is shown.
The StateHolder class — having the subject role of the pattern — has a field

168 Chapter 6. Verification of Dynamic Constraints

import java.util.ArrayList;
import java.util.Collection;

public class StateHolder {
State state = new State();
Collection <Observer> observers = new ArrayList<Observer >();

void addObserver (Observer observer) {
this.observers.add(observer);

}

void removeObserver (Observer observer) {
this.observers.remove(observer);

}

void setState (State state) {
this.state = state;
for (Observer observer : this.observers) {

observer .update(state);

}

}

}

Listing 6.1: Observer Pattern implementation in Java

state of type State; observers want to keep track of changes to this field. A Col-
lection observers contains the registered observers. Registering is done using the
addObserver(Observer) method, whereas unregistering is done using the removeOb-
server(Observer) method. The method setState(State) assigns a new value to the
class variable state. After doing so, the registered observers are notified by means
of an invocation of the update(State) method on each of them.

In a concurrent setting (i.e. the StateHolder is accessed by more then one thread),
a number of undesirable scenarios may occur:

e After the state update, but before or during the notification of the observers,
another observer may be registered. This results in the notification of an
observer that was not actually registered at the moment the state change
took place.

o After the state update, but before or during the notification of the observers,
one of the observers may be unregistered. This result in an observer not being
notified although it was registered at the actual moment the state change
took place.

6.2. Motivation by Example: the Observer Pattern 169

The observer pattern may also lead to infinite loops, which may happen even in
single-threaded programs. This may be caused by cyclic subject-observer rela-
tionships, or by state updates of the subject in an update method of an observer
(thereby triggering another update etc). In this example, we only focus on the
concurrency-related problems.

An obvious solution to the scenario’s explained above is to make the three observer-
related methods in the StateHolder class synchronised. However, although not
directly caused by the observer pattern, this may easily cause deadlock; when
an observer requires a lock on a second object during the execution of the up-
date(State) method and the thread holding the lock on the second object executes
a call to addObserver on the StateHolder instance, both threads are blocked with
no hope of being released. This sort of potential deadlock lurks in many programs
that use monitors. To prevent this, we require the subject to have no outgoing
method calls while it is locked.

The implementation that satisfies these constraints is shown in Listing It uses
a synchronised(this) statement in the setState(State) method of the subject. In this
block, the new value is assigned and a copy is made of the registered observers.
Then, when the lock is released, the observers are notified using this copy.

The above examples and discussions shows that — even for this simple example
— a number of unforeseen complications can occur in a multi-threaded setting;
this stresses the need for verification of the observer pattern implementation. In
the remainder of this section we will show that these complications are even less
obvious when aspect-oriented programming is used to implement the observer
pattern functionality.

6.2.2 Aspectd

In AspectJ, crosscutting concerns are modularised into class-like modules called
aspects. Besides elements that are allowed in regular classes, we explain two addi-
tional features that aspects can express: introductions, and pointcut/advice dec-
larations. We illustrate these by means of an AspectJ version of Listing[6.1} which
is shown in Listing [6.3] First, a stripped-down version of the StateHolder class is
shown, with only the required functionality for changing the state. Then, an im-
plementation of aspect ObserverPattern adds the observer pattern implementation
to the StateHolder class.

Introductions

Introductions change the static structure of a program. Among others, inheritance
relationships can be expressed, and class variables and methods can be added to

20
2]

22
23

170 Chapter 6. Verification of Dynamic Constraints

class StateHolder {
State state = new State();
Collection <Observer> observers = new ArrayList<Observer >();

synchronized void addObserver(Observer observer) {
this.observers.add(observer);
}

synchronized void removeObserver (Observer observer) {
this.observers.remove(observer);

void setState (State state) {
Collection<Observer> copy = null;
synchronized (this) {
this.state = state;

copy = observers.clone();

}

for (Observer observer : copy) {
observer .update(state);

}

Listing 6.2: A synchronised observer pattern implementation in Java

classes (other then the aspect itself). This allows functionally that is required to
execute in the context of another class to be specified in a modular way. Examples
of introductions are shown in Listing[6.3|on lines 10-18. The observers variable and
the addObserver(Observer) and removeObserver(Observer) methods are declared as
members of the StateHolder class.

Pointcuts & Advice

Pointcuts are declarations that select events during the execution of a program.
This can for example be a method call, execution of a method body, the creation
of a new instance, or the usage of a class variable. Lines 16-18 of Listing [6.3
show the declaration of a pointcut setState, which selects the execution of the
setState(State) method in the StateHolder class. The target and args expressions
are used to bind variables.

Advice is a special kind of method that is executed when an event selected by
a pointcut — or so-called joinpoint — occurs. Advice can be executed before,

11
12
13
14
15
16
17
18
19
20
21

NN
W N

Y O i

3

NN DN DN DN

Qo

6.2. Motivation by Example: the Observer Pattern 171

class StateHolder {
State state = new State();

void setState (State state) {
this.state = state;
}

}

public aspect ObserverPattern {
private Collection <Observer> StateHolder.observers = new
ArrayList<Observer >();

void StateHolder.addObserver (Observer observer) {
this.observers.add(observer);
}

void StateHolder .removeObserver (Observer observer) {
this.observers.remove(observer);
}

pointcut setState (StateHolder subject, State state):
call (void StateHolder.setState(State)) && target(subject)
&& args(state);

after (StateHolder subject, State state): setState(subject,
state) {
for (Observer observer: subject.observers) {
observer .update(state);
}

Listing 6.3: Example AspectJ Observer Implementation

after, or around the event. In the latter case, a special proceed statement is used
to continue the execution of the event that triggered the advice. Advice may be
given access to certain variables in the context of the joinpoint. On lines 23-27,
an advice is specified that is executed after every event matched by the setState
pointcut. It calls the update(State) method on each of the observers registered to
the StateHolder instance, i.e. the subject.

12

13
14

15

16

18

19
20

172 Chapter 6. Verification of Dynamic Constraints

class StateHolder {
State state = new State();
synchronized void setState(State state) {
this.state = state;
}
}

aspect ObserverPattern {
Collection<Observer> StateHolder.observers;
synchronized void StateHolder.addObserver (Observer observer)

{3
synchronized void StateHolder.addObserver (Observer observer)
{3}

pointcut setState(StateHolder subject, State state)
execution (void StateHolder.setState(State)) && target(
subject) && args(state);

after (StateHolder subject, State state) : setState(subject,
state) {
Collection<Observer> copy;
synchronized (subject) {

copy = subject.observers.clone();
}
for (Observer observer : copy) {
observer .update(state);
}

Listing 6.4: AspectJ observer implementation using after advice

6.2.3 The Observer Pattern using AspectdJ

We have already seen that is quite hard to get the implementation of the observer
pattern right using Java code. The example AspectJ code shown in Listing [6.3
corresponds to the code shown in Listing Again, observers may be added or
removed before all observers have received notification of a state change. Synchro-
nisation is required to prevent such scenarios from occurring. We illustrate two
variations, one using an after advice, and one using an around advice.

In Listing [6.4] an improved implementation of the observer pattern is given. The
addObserver(..) and removeObserver(..) methods have been made synchronised, as

6.2. Motivation by Example: the Observer Pattern 173

well as the setState(State) method in class StateHolder. We have left out some of
the method bodies; they remain unchanged. In the after advice, a copy is made
of the registered observers within a synchronised block that requests a lock on
the subject. The around advice is executed after execution of the synchronized
setState(State) method. It requires in-depth knowledge of AspectJ run-time se-
mantics to actually know whether the after advice is executed before or after the
lock on the subject is released.

If the advice is executed during the lock, the synchronised block in the advice has
no meaning (because the subject is already locked), and our previously scenario of
deadlock is in place; invocations of update(State) on the observers are performed
during the lock.

If the advice is executed after the lock on the subject is released, there is no actual
cause for deadlock. No outgoing method-calls (observer notifications) are made
while the subject is locked. A copy of the collection of registered observers is made
while a lock is kept on the subject; only after the lock is released, the observers are
notified. However, we are unsure if these locks are enough to prevent observers to
be added or removed in between the state change and the notification. It may be
possible that observers are registered or unregistered between the two locks.

Furthermore, while different developers may be responsible for different modules,
the developer responsible for the StateHolder class may not see any reason for the
setState method to be synchronised; he may be unaware of aspects that advice the
execution of the method and require the method to be synchronised.

A possibly “better” implementation is shown in Listing [6.5] Here, the State-
Holder implementation has no observer-pattern code at all, and the setState(State)
method is not synchronised. The ObserverPattern aspect again introduces the ob-
server collection, and synchronised methods for registering and un-registering ob-
servers to the StateHolder class. The pointcut remains unchanged. The advice
is now specified as a so-called around advice. It replaces the execution of the
selected event. In the advice, a synchronised block is used that requests a lock on
the subject. In this block, a copy of the observers is made, and a proceed(..) is
called, which continues the execution of the matched event (i.e. the setState(State)
method in the subject). Because proceed is called while in the synchronised block,
there is no need to declare the setState(State) method synchronised. After the
lock is released the observers are notified in a deadlock-free manner.

One can see that it requires a lot of knowledge and understanding of AspectJ run-
time semantics and concurrency to understand the behaviour of an implementation
in a multi-threaded setting. Although aspects modularise the functionality of the
observer pattern, this complicates the understandability of the system as a whole.
This can become even worse for large-scale projects, where not all developers are
aware of the existence of the aspects, or know where they apply. In the worst case,

13
14
15
16
17

18

2=

IR N
¢ WD =«

U W

L

S S

[\I)
oo

174 Chapter 6. Verification of Dynamic Constraints

class StateHolder {
State state = new State();

void setState (State state) {
this.state = state;
}

}

aspect ObserverPattern {
Collection<Observer> StateHolder.observers;
synchronized void StateHolder.addObserver (Observer observer)
{ -

synchronized void StateHolder.addObserver (Observer observer)

{5

pointcut setState(StateHolder subject, State state)
execution (void StateHolder.setState (State))
&& target(subject) && args(state);

void around(StateHolder subject, State state): setState(
subject , state) {
Collection<Observer> copy;
synchronized (subject) {
copy = subject.observers.clone();
proceed (subject , state);
}
for (Observer observer : copy) {
observer .update(state);
}

Listing 6.5: AspectJ observer implementation using around advice

6.2. Motivation by Example: the Observer Pattern 175

changes to the base code may even break the specification of a pointcut, or add
events that are matched by the pointcut.

A possible solution is to automatically verify the implementation of a system for
certain — dynamic — properties the system must satisfy. However, the func-
tionality that requires verification may be implemented in numerous variations,
and may change over time. Refactorings may even change the implementation
from Java to AspectJ. Therefore, we argue that software verification should be
possible in a robust manner (i.e. regardless of implementation changes), and be
independent of whether AOP is used.

Specifically for the observer pattern, we have established the following properties
that we want to verify:

e All and only the registered observers at the time of a state change receive
a notification of the new state before the method that implements the state
update has finished executing;

e To prevent deadlock occurring caused by the implementation of the observer
pattern, if the subject is locked, no outgoing method calls may occur to
objects other than the object with a lock.

The first property contains the statement “all on only the registered observers”.
This requires us to keep track of the actual objects. Only these object may then
receive a notification of the corresponding state update. In the next section we
introduce our approach for tracking objects.

There are other constraints possible on the observer pattern. For example, we
could have a requirement that observers must be notified of state changes in the
same order the state changes occur. However, it is not the goal of this work to
give a complete observer pattern specification.

176 Chapter 6. Verification of Dynamic Constraints

6.3 Approach to Verification of Aspect Oriented Programs

In this previous section we have illustrated the difficulty of understanding the
behaviour of an implementation, and how this is worsened by the use of aspect-
oriented programming. We propose to solve this by automatic verification of
system properties. We describe the approach step by step.

First, we define an execution semantics of a programming language run-time. The
semantics can be used to simulate graphs representing programs in this language,
so-called program graphs. This is illustrated in Figure [6.11 The specification
language of our choice is graph transformation. By applying all rules in all states,
a labelled transitions system (LTS) of the program’s execution is generated, where
the graphs are the states, and rule applications are the transitions. The execution
graphs consists of the program graphs and a part representing the run-time state.
A similar approach is used in Chapter [3] and Chapter [

We define an additional set of rules for verification of properties. The rules serve
as state predicates and are applied at the same time as the execution semantics.
This is illustrated in Figure The rules do not change the execution seman-
tics. Optionally, the rules may add information to the execution graphs to track
individual objects; the information may then be used within these rules to specify

program [}—]

graph gy

runtime
semantics

Simulation | <1

N
execution [
graph \ﬁ'd]
LTS

Figure 6.1: Using a runtime semantics.

program 3 —p)
graph gy

—]

A

runtime ificatic
semantics rules|

Simulation

Figure 6.2: Adding rules for verification.

6.3. Approach to Verification of Aspect Oriented Programs 177

hamess| program l—j
graph graph

runtime
semantics:

execution
graph

Figure 6.3: Adding a harness.

harness| Program [1—
graph |graph Mo ‘

Simulation

runtime
semantics

Verification

execution
graph %;?

Figure 6.4: Complete overview of the Approach.

state predicates that involve specific objects. The resulting LTS corresponds to
the original LTS and additionally reveals applications of verification rules.

Only the part of the program that is relevant for the properties that are checked
is simulated in this way. Around this part, a so-called harness is added, which
specifies instantiation of objects, creation of threads and method invocations. This
is illustrated in Figure [6.3] The harness is responsible for simulating all distinct
executions of the system that are relevant for the verification of the specified
properties. A number of special harness rules are used to simulate harness specific
actions. Method calls in the harness are handles by the execution semantics. The
resulting LTS represents all the executions specified in the harness.

The complete approach is shown in Figure The resulting LTS represents all
executions that are interesting for verification, and reveals the propositions needed
for this verification in the form of applications of verification rules. The LTS is
then used for verification. For example, model checking can be applied by using a
modal logic over the propositions. Since the verification rules can match specific
objects, we can now track individual objects between propositions.

178 Chapter 6. Verification of Dynamic Constraints

Execution Semantics

The graph based semantics consists of a set of rules for the simulation of Java
programs. This semantics includes a representation of the run-time state of a
system. Each graph contains such a structure. This is extended by additional rules
for pointcut matching, advice execution, and aspect instantiation. We simulate
concurrency by executing all threads simultaneously. This means that — in each
graph — a rule matches that represents the next execution step of each thread.
The result of a full simulation (i.e. exploring all rule applications in all states)
represent all possible interleavings of the actions of all threads.

Verification

Although the specified aspectual behaviour requires unusual actions (e.g. trigger-
ing methods without the existence of an explicit method call), the run-time states
created after application of the rules are very similar to regular Java states. We
specify properties that need to be verified as verification rules that reason about
this run-time state representation. This should provide the independence of im-
plementation detail we require. As mentioned earlier, applications of these rules
also appear in the LTS that is the result of simulation. Verification is done by
analysing the occurrence of verification rules in the LTS. For example, some rules
should never be applicable, whereas others are required. We illustrate the use of
verification rules for the properties identified at the end of Section [6.2} To simu-
late all possible executions, we use a harness that creates a (configurable) number
of threads. Each thread then performs a (configurable) number of actions. Each
of these actions is non-deterministically selected from the set of possible actions:
addObserver(Observer), removeObserver(Observer), and setState(State). Using mul-
tiple threads and multiple actions, simulation includes all possible interleavings of
actions (i.e. one thread adds an observer while another thread is updating the
state) while having different numbers of registered observers.

Simplifications

The purpose of this work is not to show that it is possible to specify a run-time
semantics of an imperative language. We merely want to show that — given such
a semantics — we can add rules to be able to verify properties as proposed. There-
fore, the run-time semantics only incorporates those language constructs needed to
illustrate that the approach is working for the presented example. We argue that
this semantics can be extended to incorporate the complete language. For the base
language (Java), our semantics includes method-calls, (synchronised) method ex-
ecution, using variables, assignment, and synchronisation blocks. Other features

6.3. Approach to Verification of Aspect Oriented Programs 179

— such as inheritance and dynamic method lookup — are omitted. However,
rules for these features can be found in [KKRO6|; our semantics is based on the
semantics defined in this work.

For the aspectual extension (AspectJ), our semantics includes matching ezecution
pointcuts, after and around advice, and the proceed statement. We assume that
all aspects use the perTarget initialisation scheme, which is part of AspectJ. This
means that a new instance of the aspect is created for each distinct target of a
matched event.

For the purpose of running the example, some ad hoc rules are used regarding the
handling of collections. Instead of specifying the methods in a concrete Collec-
tion implementation, we assume the existence of AddElement, RemoveElement and
Clone statements.

To reduce the size of the generated state space, we only simulate the part of the
program involved in the properties that are verified. For the observer pattern, this
means that we look at state changes (the assignment of a field marked as state),
and notification of observers (method calls to elements of field of type Collection
marked as observers).

Rule Categories

The approaches uses a lot of rules, which can be grouped into classes for each
purpose. We explain these classes one by one:

e Multi-Threaded Java Semantics: A set of platform specific rules that
models the execution semantics of Multi-threaded Java programs. The rules
are specified once and can be used to simulate all programs that use the
specified language features. We extended the semantics in [KKRO06] with
multi-threading and synchronisation, which we explain in Section The
rules for the Java semantics are explained in Section [6.4.2

e AspectJ Semantics: this set of rules extends the Java semantics with a
minimal set of Aspect] features. These rules are explained in Section [6.4.3

e Harness Semantics: this set of rules is used to initialise a program with
a specified number of threads, initialise objects, and to non-deteministically
invoke a number of methods on these objects. The semantics can be reused
for different harnesses. The most important rules are explained in Section
We focus on the graph representation of the (problem specific) harness.
The rules however can be used to simulate any harness.

e Verification Semantics: a set of rules has been defined specifically for
verification of properties of observer pattern implementations. We use these

180 Chapter 6. Verification of Dynamic Constraints

rules to explain how to keep track of individual objects by adding information
to the graphs and using this information in the rules. The rules are explained
in Section [6.5.2)

6.4 Semantics

In this section we explain the execution semantics of the Java and AspectJ lan-
guage. The semantics is based on the semantics defined in [KKRO06], and similar
to the semantics defined in Chapter We have extended this semantics with
synchronisation. We first explain the synchronisation model. Then we explain the
rules for Java language. Readers already familiar with the semantics can safely
skip this part. Then we explain the rules of the AspectJ semantics and the ad hoc
rules used for dealing with collections.

6.4.1 Multi-Threaded Java

To be able to simulate multi-threaded Java programs, we introduce a number
of concepts to our graphs. These concepts extend the model for normal Java
programs, which we discuss in more detail in the next subsection. The type graph
of the concepts is shown in Figure[6.5] The most import new elements are Thread
nodes. Each frame — an element that controls the execution of a method (we
discuss these in more detail later) — is executed in a thread, as indicated by a
thread edge.

A thread can have a lock on an object, which is indicated by a thread edge. When
a lock exists, synchronised events that refer to the locked object must wait until
the object is released (i. e. the lock is removed). We illustrate this by showing the
relevant parts of rules that specify such events. The rules are explained in more
detail later.

Figure [6.6] shows part of the rule that matches a method call to a synchronised
method; the signature referenced by the method call has a synchronized self-

signature

[_Frame |——> signature | [stmt]
thread ‘ 4\ 0..1 %
-

Figure 6.5: Type-Graph for representing multi-threading.

6.4. Semantics 181

—————— po----- MethodCallStmt

aus target

thread ! AL;x_S_Io_t_' t
_at ;
parent g - r Expr sighature

Signature
| k syhchronized

Hirnnng E

S Thread §
th[ead =1IIIII;?IIIIIElI """""lDCk"

-
“I=

H

Frame
MethodFrame
init

Figure 6.6: Locking mechanism using a synchronised method call.

edge. When the rule is applied, a new frame is created that has a lock on the
object. However, this can only be done when no other thread already has a lock.
The lock is released when the frame is deleted. A synchronized block is represented

', _h - - —lack: - _)-
thread ""! =, Io_c:k rea o Object
| "f;," E thread
| Frame | § Thread £ Frarme
I |
pc pc
¥ ¥
LockStrmt ReleazeStmt
Strnt Strmt
(a) Lock (b) Release

Figure 6.7: Locking mechanism using a LockStmt and ReleaseStmt.

by a Lock and a Release statement, which are executed at the beginning and the
end of the block, respectively. The LockStmt (Fig. has an argument which
evaluates to the object on which a lock is required. Again, the rule can only be
applied when no other thread already has a lock on the object. The lock is released
when the ReleaseStmt (Fig. is executed.

The behaviour of the system having to wait on a lock being released is represented
by the rules not being applicable because of an existing lock. The same is seen in
simulation of the rule system. Where simulation of other threads may continue (by
applying rules on other parts of the graph), the waiting thread can only continue
until the rule becomes applicable.

182 Chapter 6. Verification of Dynamic Constraints

6.4.2 Java Semantics

Graphs
signature 0.*
Class var param Signature
name : string name : string
’ it i
type
. Y Var
signature
index : int
S:tmt l name : string
e et var C:
tmt ! signature
Method

Figure 6.8: Abstract Syntax Graph for Java Programs.

To simulate a program using graph transformations, we must represent it as a
graph. The type-graph of such a representation — the so-called abstract syntax
graph — is shown in Figure[6.8] It consists of Class nodes, with signature edges
to Signature nodes, and method edges to Method nodes. Methods again refer to
one of the signatures supported by a class. A signature consists of a name and a
number of parameters. These parameters are represented by Var nodes connected
to the signature by param edges. Both classes and methods have var edges to the
Var nodes representing class and local variables, respectively. The outgoing var
edges of a method point to the var nodes used by its signature for the parameters.
A method has a single statement — most likely a block statement — represented
by the Stmt node connected to the method with a stmt edge.

We must also encode run-time state in the graphs. The type-graph of a heap
representation — the so-called value graph — is shown in Figure It consists
of Object nodes, with an instanceof edge to the Class node representing their
type. Objects can be stored in slots. VarSlot nodes represent containers for the
value of a Var node (as indicated by the instanceof edge, whereas AuxSlot nodes
are containers for temporary evaluation results (as indicated by the at).

Figure shows the type graph of the stack frame representation. These frames
are used to control the execution of methods, by means of a program counter to
the current program element. This program counter is updated until execution is
finished. Then, the program counter of the parent frame — which was halted by
removing the program counter — is resumed by restoring the program counter. A
Frame has:

6.4.

Semantics

var

183

AuxSlot | | VarSlot

JOosoUBISUl

«from ASG»
Class

JOSOUBISU

=8

type «from ASG» «from ASG»
Expr Var

Figure 6.9: Value Graph for representing Heap.

lock 0.1
«from VG» «from VG» «from VG»
AuxSlot VarSlot Object
ix var 0 If
Thread se
id : int
parent
thread

flow

= FlowElement
signatdre gcutes

«from ASG» «from ASG» «from ASG» || «from ASG» || «from ASG»
Signature Method Expr Stmt Exit
calledFrom

S

=
symchronized

Figure 6.10: Frame graph and Flow graph for representing Stacks Frames.

a self edge to the Object in which it executes;
an executes edge to the Method it is executing;

a signature edge to the signature of the method;

var edges to VarSlot nodes for the values of local variables of the method;

a parent edge to the Frame that executed the statement (i.e. a method call)
for which the frame was created, and a calledFrom edge to that statement;

optionally a number of aux edges to AuxSlot nodes that store temporary

evaluation results;

184 Chapter 6. Verification of Dynamic Constraints

e a pc edge to the current program element, conveniently always labelled with
a FlowElement edge. This can be a statement, an expression, or the exit of
a method. Before simulation, the internal control flow in method bodies is
resolved and explicitly added in the form of flow edges.

An abstract syntax graph is extended with a so-called flow graph to easily update a
program counter. The abstract syntax graph and the flow graph together form the
so-called program graph. A program graph, value graph and frame graph together
forms a so-called execution graph.

We now enumerate the rules for each of the statements and expressions supported
by our semantics. The abstract syntax graphs of statements is omitted, but are
also in the rules.

Creating new objects

instancenf

j
pc at’
FlowElernent flow—| CreateExpr by » Class

Figure 6.11: The CreateExpr rule

A constructor call is represented by a CreateExpr node, which has a type edge
to the Class that is instantiated. The rule for this expression is shown in Figure
Notice that the rules matches a Frame with a pc edge to the expression.
This pc edge is deleted and a new pc edge is created to the next flow element.
As a result of the create expression, a new Object is create with an instanceof
edge to the type referenced by the create expression. This new object is stored in
the frame by an AuxSlot, with an at edge to the create expression.

We do not deal with constructor bodies in this semantics, nor do we initialise class
variables; these features are not required for the simulation of the observer pattern
implementation.

Variable Usage

So-called getting of variables is expression using two different expressions: a
SelfExpr and a VarCallExpr.

The SelfExpr represents a this reference. The rule for this expression is shown
in Figure A new AuxSlot is created for the expressions; the value of the
AuxSlot is set to the Object node referenced by the self edge of the Frame.

6.4. Semantics 185

pe Frame If Object
i e,
po AL, walue

e |
FlowElement |-(—f|0w SelfExpr A

Figure 6.12: The self expression.

M ethod
executeS VarSlot el instanceof
Frame \;i[x %
AuxSIot EI
flow@

FOUCe

:ul’lm;

SExprz
Hinnnr

Figure 6.13: Local variable usage.

The rule shown in Figure is used for evaluating a VarCallExpr without an
outgoing source edge; it evaluates to the value of the referenced Var node, which
is a local variable. The value of a new AuxSlot is set to the value of the VarSlot
that is an instance of a local Var referenced by the Frame.

i

I

I

I

I

i

I

fow— yarcallEx !

pr ar instancenf— YarSlot '
- - aLx

war ;

I

I

|

FOUNCe
Object - - yalue v

Figure 6.14: Variable use from a source.

The rule shown in Figure [6.14] is used for evaluating a VarCallExpr with an
outgoing source edge. The expression evaluates to the value of the referenced
Var node as a field of the source edge.

186 Chapter 6. Verification of Dynamic Constraints

Assignment

Assignment of variables is represented by the AssignStmt and can be used for
local variables and for variables of an object.

|
|nstanc:eof !
\
i

FlowElement flow *)ﬁ value

i
i
pC _| Frame I—var—)| VarSIot l—valueﬂ Obfd| i
i
i
i

expr :

. A
""""" L "AuxSIot:

Figure 6.15: The Assign Statement for Local Variables.

Figure shows the rule for assigning values to local variables. It matches a
VarCallExpr without a source edge. The value to be assigned is the evaluation
result of the expression referenced by the expr edge, and is stored in the corre-
sponding AuxSlot. The Var node referenced by the VarCallExpr represents the
variable that this value is assigned to. The value of the corresponding VarSlot in
the Frame is deleted, and the new value edge is created.

— e Frama] - - - Huxs,otr_ -3l 00em
source

instanceof - - -value - _ a

wvalue

EHPT

.
Expr __ JAuxSIot:

Figure 6.16: The Assign Statement for Class Variables.

Figure shows the rule for assigning values to class variables. The difference
with the previous rule is that this statement has a source edge to another Expr.
The assignment is performed on a variable of the evaluation result of this expres-
sion.

6.4. Semantics 187

Method Calls

e e
T A= —mmmmmmmmmmmmmmmmm ! AuxSlot R
e
\ \

= calledFrom: : o \‘at__

I -
N
index &t
thread B -
at
index'."
parent : ;
Thread parann® Yar at
P .
""I.
thread method “spnchronized /
signature g, B instanceof
I self i K
] Framme

tethodFrame
init

Figure 6.17: The Method Call Statement.

Method calls are represented by a MethodCallStmt. The corresponding rule is
shown in Figure [6.171 The statement has a target edge to an expression; the
result of this expression is the target of the method call. The signature referenced
by the method call is matched with a method with this signature in the class of
the target object. A new Frame is created with a parent edge to the current frame.
The frame is initialised with an init edge that is used later. The program counter
of the current frame is replaced by a calledFrom edge from the new frame, and
the self, executes, and thread edges are created. The remaining nodes and
edges represent a parameter transfer from values of arguments to variables of the
new frame.

Notice that the Signature node may not have a synchronized labelled self-edge.
We have a seperate rule for synchronised methods.

1 it
soo-){ Frame 1 » hethod

Flowy

p: 3t FlowElement

Figure 6.18: Invoke a Method.

Handling method calls and starting executing of the invoked method are sepa-
rated into two steps. This is done to be able to support around execution advice

188 Chapter 6. Verification of Dynamic Constraints

correctly, as we will see later in this section. The rule in Figure [6.18| represents
starting the execution of a method. It matches a Frame with an init edge. It
creates a program counter to the first flow element of the method that it executes.

FlowE lerment DC :Val'5|0t',____at___};"';f
N S

g
e parent ovar”
) .-
Strmt [% - - calledFrom- - - - Frame r - - - executes - - M Method
= exit

Exxit

Figure 6.19: Exiting a Method Body.

Once the program counter of a frame reached the end of the control flow of a
method body — represented by an Exit edge — the frame is removed and the
parent frame is resumed. This is done by the rule shown in Figure It deletes
the current frame, and restored the program counter of the parent from at the
next flow element from the statement referenced by the calledFrom edge. Notice
that all VarSlot nodes connected to the Frame are deleted also.

Synchronisation

Synchronisation can be specified in two ways, either by declaring a method syn-
chronised, or by using a synchronised block.

i
:
Expr at‘/“* V !

|ndex at -

index

calledFrol

.
zighature

Class || Signature [—param-™ Yar a.lt
synchronized :

method

:ulrilllllllg

thread =

| Frame]

kethodFrame
init

. instanceof
sighature B

Walle

Figure 6.20: A Synchronized Method Call Statement.

6.4. Semantics 189

Synchronised methods are represented by a special rule for a MethodCallStmt.
This rule is shown in Figure[6.20] It matches a call with a synchronized signature.
The rule is identical to the rule for a normal method call, with the exception that
it also requires a lock on the target object.

Hunnnng

E Thread guuuu Iock— - -value- - - - {.&L:X_S]D_t_:

ﬂIIIIIIEIIIi *———r—
value aun !

lock

.

oo P& at

I
' i
¥ I
LockStmt ;
FlowElement flowy——{ Stmt expr

Figure 6.21: The Lock Statement.

As mentioned earlier, synchronised blocks are represented by a LockStmt and a
ReleaseStmt. The rule for the LockStmt is shown in Figure The statement
has an expr edge to the expression that evaluates to the object on which a lock
is required. For example, for the code synchronized(this){}, the expression is a
SelfExpr. Again, no other thread may exist with a lock on the object, and when
the rule is applied, the lock edge is created from the current thread to the object.
An AuxSlot is created for the LockStmt that referenced the locked object.

i’% el I
ReleazeStmt

fl

FlowElernent o St Telease: LockStrmt

Figure 6.22: The Release Statement.

The rule for the ReleaseStmt is shown in Figure It is targeted by a release
edge from the corresponding lock statement; this is used to matched the locked
object. When the rule is applied, the lock on this object is removed.

190 Chapter 6. Verification of Dynamic Constraints

«from ASG»
Class

/\

«from ASG» «from ASG»
Method Signature

signature

method

signature, before, after

param |,

0.1

«from ASG»
Var

Figure 6.23: Aspect syntax graph of aspects.

«from ASG»
Method

«from FG»

at
Frame |

Tag

6.4.3 Aspects

We specify only a small part of the AspectJ semantics, namely ezecution pointcuts,
after and around advice, and the proceed statement. The type graph of the
program graph corresponding to the syntax of the aspects is shown in Figure
Aspects extend regular classes and can thus contain variables and methods.
Aspects can also contain advices and pointcuts, which extend regular methods
and signatures, respectively. The signature edge of an Advice node points to a
Pointcut node. An additional after or around edge is required to specify the kind
of binding (before advice is not included in the semantics). The pointcut selects a
number of syntax elements by means of a select edge; since the examples only use
erecution pointcuts, the select edge always points to a Method. Whenever, this
method is executed, the execution of the advice is triggered in a way corresponding
to the binding specification (i.e. after or around). The parameters of the advice
are given by the parameters specified in its signature. Besides these parameters,
a pointcut is specified to bind one more parameter, namely the target; for method
execution this corresponds to the object in which the method executes. A Tag
node is used to prevent frames from triggering advice more then once.

The rule shown in Figure represents matching an execution pointcut; the
Pointcut node has a select edge to a Method. An Advice is matched that has
an after edge to this pointcut. The advice is executed after the selected method
by matching a frame that has a pc edge to the Exit of this method. This frame
may not have a connected Tag node, which prevents the frame from being matched
twice. A frame is created for executing the advice, with the matched frame as its
parent. The pointcut acts as a signature for the advice. Parameter transfer is
done similar to method calls. An additional variable is initialised to self object
of the matched frame.

6.4. Semantics 191

aIL. ﬁ Object I"'_‘ wall —[vartiat
inztanceof instanceof

war T-at

N . var
o ind > ind (e
jH —thread J-thread
Frame parent Tag
[dvice Jagevecriee i o S S—
1
war pararn
paran Yarslot Al
|
after, signature instamceot
Signature executes
War L.
pararm, target zignature
b

Pointcut | select | Method

Figure 6.24: After-Execution Advice.

Figure [6.25] shows a similar rule, but for an around advice and an execution point-
cut. The different is that it matches a Frame with an init edge, meaning that
execution has not started yet. For around advice, a frame is inserted between the
matched frame (corresponding to the execution pointcut) and its parent frame.
With the resulting structure, the advice can activate the matched frame; when
it is finished, the execution of the advice is resumed. Only when the advice is
finishes, the parent frame is resumed.

The created frame gets a parent edge to the parent frame of the matched frame.
The matched frame is referenced by the advice frame via a proceedFrame edge,
which indicates that this frame is executed when a proceed statement is executed.

Since we model advice as a method execution, the frame that executes the advice
must have a self edge. This self is the instance of the aspect. We limit the model
to perTarget instantiation. This means that an instance of the aspect is created
for each distinct target of an event intercepted by the aspect. This instance of the
aspect is the context of advice execution. Instantiation only happens once; the
second time a target is used, the instance that has been created is reused.

The instance is stored in a VarSlot of the object. No corresponding Var node
exists in the type of the object.The rule in Figure [6.20] creates a new instance of
the aspect for the target object if no such instance can be found, and creates a
self edge from an advice frame to this instance. The rule in Figure locates
an already existing instance of the aspect, and creates the self to this instance.

192 Chapter 6. Verification of Dynamic Constraints

- WarSlot
VarSlot [T EL ﬁObjectl‘n walu

et

. vl
instanceot

var =k T ind ~Tivar |a—instancect

Frame procesdF)ﬁ'?am‘at

param Nt e thrad thread—g '
i

| FlowElermant M - - - - - - - - -calledFrom- - -gelf
param
execules var calledFrom

Advice
WarSlot alu ¥ Cbject

around, signature instanceof Iq executes
ignature

signature

War
pararn, target

Fainteut | t%l

Figure 6.25: Around-Execution Advice.

war

nnng

: L
é,,,,'f{ﬁﬁ,ﬂ" selfun seli— Object € vate—] arSiot Jmvar—d Object [value—| VarSlat

instanceo

=
g

execUte: instanceof instanceof

.] .
Advice rnethod—— nninstanceof g &
gnatur "] Pointout target

Figure 6.26: Creating an Aspect Instance.

Figure[6.28 shows the rule that matches a program counter at a ProceedStmt. The
init edge of the proceedFrame is restored, with the advice frame as its target;
when the proceeding frame has finished execution, the advice frame is resumed at
the ProceedStmt.

A special rule is required for an exit statement in an advice body. When a program
counter is at a regular exit (see Figure , the program counter of the parent
frame is restored at target of the outgoing flow edge from the node targeted by
the calledFrom edge. The rule in Figure[6.29|is applied when an exit in an advice
occurs and the advice is triggered by the existence of a program counter on the exit

6.4. Semantics 193

war

Hinng l

Z Obj g(self wm self=] Object [avalue—{varglot [var—] Object [vale— varglot]

HinnnnnrE B

ingtancenf instanceof |
instanceof

execUtes

method
signaturew target

Figure 6.27: Resolving Existing Aspect Instances.

Aspect Var
perTarget

init

Frame calledFrom

| proceadFrame

parent) - ——————— poo----- 3 ProceedStmt

Figure 6.28: The Proceed Statement.

of a method (i.e. an after execution advice). Since this exit has no outgoing flow
edge, the regular exit-rule cannot be applied. Therefore, the program counter is
restored at the exit itself. The Tag node that was added to the frame prevents the
parent frame from being adviced again. The tag is deleted when the corresponding
frame no longer exists. This is done by the rule shown in Figure [6.30

——-calledFrom———- - :'"'Vaf")":_\-ia_rgl_oi: ----- at---‘-)*; v

pe parent’) Advice

’ eHit hethod

Figure 6.29: Exiting an Advice Body.

r—="1
1Tagt

Figure 6.30: Tag Removal.

194

r
I
'

r
I
'

Chapter 6. Verification of Dynamic Constraints

pc

e
- ———-au:-: —--)::_ﬂg)fﬁrlgt_:——value

,
pc ét Class
! hamme = "Collection”

war +
FOUNCe: .
instanceof

Howr Vaf—)M(—instanceof WarSlot - —value-m Object

Expr
h
FlowElement element
Expr

-]
at-----
——————— ———————-value———————————————————————

EHPT I
A !
FlowElement elamant
|
Expr

Clasz
name = "Collection”

at
!
i war +
sourced Expr .
instanceof

o war ar instahceof WarSlot | —wvalue

-]
at-----
——————— ———————-value———————————————————————

Object (% - - - - value- - - - -4 ! ;L_Dfs_'?t_: ______ oo o
I
I
I
element o FlowElement expr
: Flowy
I
instanceof
: at
K element A
v ‘: |
. BuxSlot
@instanceof Object vl
(c) Cloning

Figure 6.31: Rules for using collections.

6.4. Semantics 195

6.4.4 Ad Hoc Rules: Collection Handling

A number of special rules is used to make the semantics described work for the
observer pattern examples. These rules allow us to deal with collections without
representing the implementation of this class in the graph. We introduce the
two special statements AddElementStmt and RemoveElementStmt. The rules are
shown in Figure[6.31] They are very similar to calling and assigning variables w.r.t.
the usage of the source, var and expr edges. For making copies of a collection,
we introduce a CloneExpr, which results in a new object of type Collection, with
element edges to all elements of the original collection. The rule is shown in Figure

6.31c

Two rules are required for iterating over the elements of a collection. We introduce
a ForAl1Expr, which has an expr edge to the expression that evaluates to an object
of type Collection. Furthermore, the ForAl1Expr has two outgoing flow edges,
namely inflow and outflow. The inflow edge is used while not all elements have
been used, whereas the outflow is used when iteration has finished.

mnnn
T
T
o
=

AuxSlot foreach at
value

expr— ForEachStmt
1 B Strnt

- Y A
element Object

value

Aot

b
pu ‘;1 FlowElement

Figure 6.32: ForAllExpr with more elements.

Figure shows the rule that matches when not all elements have been used.
It matches an element in the collection that has no incoming forall from the
AuxSlot, and adds this edge to the matched object. The object is set as the result
of the ForAl1Expr, can be used by successive flow elements, after which flow will
return to the ForAllExpr.

Figure [6.33] shows the rule that matches when all element have been used. It
matches when all elements of the collection object are connected to the AuxSlot,
and creates a program counter to the target of the outflow edge. Although not
specified in a very elegant manner, the rules provide a way to use collections
without representing the implementation of a collection and iterator class in the
graph.

196 Chapter 6. Verification of Dynamic Constraints

[P FarEachStmt
AURSIOt - o oo gto---o2 -
1 Alxolot - at Expr M expr St

TR valee
i Object - A
! lemen ,_Object
) at”

I
i B L A E outflow
I I
' aun foreach .

-- -
FlowElerment

prc

Figure 6.33: ForAllExpr with no more elements.

6.4. Semantics 197

2.
8

R By A P g o gty g e e B

¥

BB

(a) One Thread (b) Two Threads

Figure 6.34: Resulting state spaces in single- and multi-threaded simulation.

6.4.5 Example

As an example of the difference between single- and multi-threaded simulation, we
show the resulting labelled transition systems for a very small program. Figure
shows the resulting state space of a program that invokes a constructor.
The program executes in a linear fashion: only one rule can be applied in each
state. Figure [6.34b| shows the state space for a program that creates two threads
that both invoke the same constructor. Both threads execute in a linear fashion,
however, the steps of the one thread can be interleaved by steps of the other
thread. The states can be seen as an abstraction of the positions of the program
counters of both threads. The state space converges into a single state when the
program counters are deleted. The final state contains two objects.

Simulation of Java and AspectJ programs makes no essential difference, except
that, for AspectJ, a larger set of rules is used.

198 Chapter 6. Verification of Dynamic Constraints

1| class Client {

2 public static void main(StateHolder sh) {
3 int actions = 2;

4

5 for (int i=0; i < actions; i++) {

6 choose {

7 sh.addObserver (new Observer ());
8 } oor {

9 sh.removeObserver (sh.observers.getRandom ()) ;
10 }oor {

11 sh.setState (new State());

12 }

13 }

14}

16 |main () {
17 int threads = 2;

18 StateHolder sh = new StateHolder ();
19 for(int i = 0; i < threads; i++) {
20 // virtual fork

21 new Thread.run(Client.main(sh));
22 }

23 [}

Listing 6.6: Scenario Program

6.5 Verification of Observer Pattern Implementations

In Section [6.2] we have stated that the following properties must hold during any
execution of a program using the observer pattern:

e All and only the registered observers receive a notification of a state change;
this notification occurs before the method implementing the state update
has finished execution;

o If the thread executing the notifications has a lock on an object, no outgoing
method calls may be performed on objects other then the locked object.

We verify these properties by simulating the creation of a number of threads;
each of these threads performs a predetermined number of method-calls on a
single instance of the observable class (StateHolder). These actions are non-
deterministically chosen and can be a call to addObserver(Observer), removeOb-
server(Observer), or setState(State). The described scenario is shown in pseude-

6.5. Verification of Observer Pattern Implementations 199

«from ASG»
Class

j .
subjiect actions

observers

«from ASG»
Var

«from ASG» «from ASG»
Var Method

Figure 6.35: Verification and simulation parameters in the graph.

code in Listing with two threads and two actions per thread. The main()
method creates a single StateHolder instance, and performs a forked call main-
(StateHolder) on a new instance of the Client class. There, a choice is made a
number of times between the described actions. For adding an observer and set-
ting the state, new instances are used as argument. The removeObserver method
is called with a random registered observer as argument; when no observers are
registered, it uses a dummy object.

In this section, we first discuss the harness semantics, which takes care of executing
the pseudo-program shown in Listing[6.6] Then, we show the constraint semantics
and explain how the generated LTS can be used for verification of an observer
pattern implementation. Finally, we present our experimentation results.

6.5.1 Harness Semantics

A harness graph has a single Program node. This program, which can be executed
by a so-called program frame (a special frame that has no parent frame), has a
main edge to the initial method of the program. For the given pseudo-code, this
edge points to the main(StateHolder) method of the Client class. The program
node also has an outgoing flow edge to an Exit, such that its child frame can be
finalised in a regular manner. The program is finished when the program counter
of the program frame points to the exit of the program.

The harness uses a number of parameters that are represented in the graph as
nodes and/or edges connected to a single Verify node. These include the roles
of syntax elements in the observer pattern may have. The type-graph of the
parameters is shown in Figure[6.35] The edges and their targets have the following
meaning:

e an actions edge to an integer attribute determines the number of method-

200 Chapter 6. Verification of Dynamic Constraints

Signature
name = "update”

Verify

Class X §

hject— _ - —notify3 Method .

name = “StateHolder" subjec ta;tmnlz_ 2 slgnature
id =

tid = 11 method

war
var + |

Class war Class
" L [P obseriers anat
name = "Collection name = "observers" name = "Observer’ fgnature
Class var
state
name = "State" }‘Lt”'p% name = "state”

Figure 6.36: Harness parameter graph for the code in Listing

calls performed by the Client;

e a number of tid edges to integer attributes correspond to thread identifiers;
the number of such edges determines the number of threads that is created;

e a subject edge to the class that has the subject role; during simulation, this
property is propagated to instances of the class (i.e. Object nodes);

e an observers edge to a Var node of type Collection, that contains the regis-
tered observers; during simulation, this property is propagated to the value
(an Object node) of an instance (a VarSlotnodes) of the variable.

e a state edge to the Var node representing the variable of the subject; as-
signments to this variable correspond to the state changes of interest;

e a notify edge to the Method in the observers’ class that corresponds to
notification.

Figure [6.36] shows part of the graph that corresponds to the code in Listing [6.6]
The Verify node has an actions attribute with value 2 and two tid attributes.
The subject edge selects the StateHolder class. The state and observers variables
of this class are selected by the state and observers parameters, respectively.
The notify parameter is set to the update method in the Observer class.

Having these parameters in a central location in the graph, allows to easily con-
figure the simulation scenario. Once the harness configuration is established for
a certain implementation, the rules for verification of the implementation become
implementation independent; they merely refer to syntax elements referred to by
the harness. For the observer pattern, the above representation already imposes
a number of constraints on the implementation. For example, the state of a sub-
ject must be represented by a class variable. We feel, however, that the chosen
representation and the corresponding constraints implied on the implementation
will be correct for most observer pattern implementations. As evidence, we found
that all our examples satisfy such constraints.

6.5. Verification of Observer Pattern Implementations 201

Without showing the rules of the harness semantics, we describe the resulting
behaviour in an informal way:

e A number of required objects is created using the subject, state and
observers edge. For the example program, this results in a correctly ini-
tialised instance of the StateHolder class, with an empty collection of ob-
servers and an initial state.

e A Thread node is created for each of the specified thread identifiers.

e For each thread, a number of frames are created (one for each level in the call
stack), such that the graph corresponds to a program that has reached line 3
of Listing The harness uses the method that is pointed by the program
as the main method for this step. The frames responsible for executing this
method are given an integer attribute that indicates the number of actions
left to be executed.

e From this point, the execution semantics takes over. The non-deterministic
choice is modelled by having multiple method bodies connected to the “main”
method. Each time the program counter is increased to the first FlowElement
node, any of these method bodies can be selected.

e When the “main” method is at its exit, a special rule takes care of decreasing
the number of actions it has left. While the number is greater then zero, the
program counter is then reset to the start of the method.

6.5.2 Verification Semantics

Using the execution semantics and the harness we can simulate a program with
multiple threads, each of which performs a number of non-deterministically se-
lected actions on an instance of a subject class (i.e. the observer pattern imple-
mentation).

We now describe a number of rules that are applied during simulation of the
program. Some of these rules — the ones that add information to the graph —
are given a higher priority than the rules in the execution semantics. This is to
make sure that they are applied before the program continues. However, they
do not change the part of the graph that represents the program state; regular
execution continues without change after the information has been added. In
the generated LTS, the application of such a rule can be seen as a proposition
that holds in the source state. Other rules — that merely query the graph for
the existence of a certain structure — have the same priority as the rules in the
language semantics. Since they do not change the graph, these rules can be seen
as propositions that hold at a certain state.

202 Chapter 6. Verification of Dynamic Constraints

First, we must express a rule that detects the occurrence of a state change. This
is specified by the rule shown in Figure [6.37] It looks for the existence of an
AssignStmt on a variable marked as state in an object marked as subject. Since
we are interested in the notification of observers related to this state change, it
requires that the number of registered observers is greater than zero.

Object I‘"\ observer Werify
element subject

ey [PES ateneen obseren Requirelatify sub|ec:t state

state beforeE it self
= ReqwreNotlfy :lllstate\ml{value AuxSlot Frame -
'|IIIIIIIIIIIIIIIIIIIIr ! - -
at
Expr l"\ Expr AzzignStmt

Figure 6.37: Detection of a state change.

A RequireNotify node is created that is used for analysis of notifications. It has
the following outgoing edges:

e one or more observer edges to the registered observers; all and only these
observers must receive notification of the state change;

e a beforeExit edge to a Frame; notification of the observers must occur
before this frame finishes (i.e. is deleted);

e a subject edge to the object with the subject role;

e a state edge to the new value of the state.

m(fexecutesﬁ SE"*’Wnotmed

notify observer

VarSIot walue Object state RequireMatify

Figure 6.38: Detection of a (legal) notification.

After the detection of a state change, the graph contains a representation of the
required notification. Now, we can start detecting these notifications and see if
anything goes “wrong”. The rule in Figure detects a scheduled notification.

6.5. Verification of Observer Pattern Implementations 203

Method erecutes— —self i
Frame * —)IMM"""{observerlnotified} A

init LTI

T
ALl
war statel“““‘““
1

LS “\uulull“
| WarSlot I—value—)| Ohjectﬁ

Figure 6.39: Detection of an illegal notification.

F

q
nitify [T TV TEV TN

A Frame exists that executes the method that is marked as notify in an object
that must be notified (as indicated by the RequireNotify node). The new state
is passed as an argument of the method call. To “remember” the notification, the
observer edge is removed and a notified edge is added.

Figure [6.39] shows the _illegal_notify rule. A notification is detected for a combi-
nation of state and observer that are not connected by a RequireNotify node.
Notice that the rule does not change the graph; its applicability can be seen as a
property that holds.

qunnnng . FITTITITS

= Object 3 cbservermnm| RequireMatify junmbeforeE xitod Frarme =
AnnnnE v o——a— oS Tmmunr

Figure 6.40: Detection of complete notification.

Figure 6.41: Detection of missing notifies.

Once the Frame that was marked as beforeExit is deleted, we can verify if all
observers have received notification. Figure [6.40| shows the _all_notified rule that
matches when notification for a state change is complete. The case where there
are missing notifications is matched by the _missing_notifies shown in Figure[6.41
When applied, both rules delete the RequireNotify node and its incident edges.

thread value
Frame au r""l AuxSlot
pc at

MethodCallStmt target

Figure 6.42: Detection of a deadlock causing method call.

204 Chapter 6. Verification of Dynamic Constraints

Deadlock is detected by the _deadlock rule shown in Figure [6.42] It matches an
outgoing MethodCallStmt from a locked object; the target of the method call
must be another object. Obviously, this does not indicate actual deadlock; we
merely want to make sure that — if deadlock occurs — it is not caused by the
implementation of the observer pattern.

proceedFrame

-

beforeE it beforeE xit

RequireMotify

Figure 6.43: Propagation of the beforeExit label.

Currently, we have specified that the notifications must be completed before the
beforeExit frame is deleted. In aspect-oriented implementations, we want to
allow notification to take place also in an advice that is executed “around” the
method that performs the state change. This is done by the rule shown in Figure
It propagates the beforeExit property of a frame to the frame that executes
an advice around the frame. Thus, using the verification rules on aspect-oriented
implementation requires only one additional rule.

6.6 Experimentation

Using the given semantics, we can now simulate observer pattern implementations
according to the scenario described in the beginning of this section. This will give
us a labelled transition system, with transitions for Java and AspectJ actions, as
well as transitions that correspond to the rules for observer verification. Given
these rules, we merely need to verify that a generated LTS does not contain any
transitions labels _illegal_notify, _missing_notifies, or _deadlock.

We have run the described simulation for the following six graph representations
of observer implementations:
e the java graph corresponding to the source code in Listing

e the java synchronised graph corresponding to the same example, but with
addObserver, removeObserver, and setState made synchronised;

the java synchblock graph corresponding to the source code in Listing

the after graph corresponding to the source code shown in Listing (6.3}

the after synch corresponding to the source code shown in Listing

6.6. Experimentation 205

%

s | 8

fman = =

< ©w 8 ;g
= 5 | o] 2%
3| 2 g e Sl=12
z| 5 5 Z R ST
AN AN RN
28] = E AR S
java 12 %@ | 107 [N|N|N
java 13| 1974) | 215 | N| N[N
java 2| 2| 15343 (5) | 21600 | Y | Y | N
java synchronised || 2 | 2 | 1864 (5) | 2519 | N | N | 'Y
java synchblock 2121 9525(5) | 12916 | N | N | N
after T2 142(3) | 157 |[N| N[N
after 13| 303(4) | 333 | N|N|N
after 2| 2]20435(5) | 27635 | Y | Y | N
after synch 21 2] 2848 (5) | 3687 | N | N |Y
around synch 2| 2]12507(5) | 16512 | N | N | N

Table 6.1: Verification results of all scenario’s.

e the around synch corresponding to the source code shown in Listing 6.5

The graphs that correspond to these implementations are specified by hand. For
the usability of the approach an automatic graph generator needs to be imple-
mented. We have experienced that this can be done in a straight-forward way;
we have specified such a translator for the semantics in Chapter The chal-
lenge lies in the identification of the relevant part of the implementation and the
identification of the roles that are used during the simulation.

The simulation results are shown in Table The different implementations
are simulated for different numbers of threads and actions. To illustrate how
the approach scales, we have shown the number of states and transitions in the
generated LTS.

For verification, the table shows if the generated LTS contains a transition labelled
by the mentioned rules. We merely need to check for the existence of transitions
that correspond to rules that express a failure. When no problems occurs, each of
these columns should contain an “N”. The results correspond to the expectations
that we discussed in Section [6.2} As expected, no problems occur in simulations
with one thread. The described problems only occur when the implementation is
used by more then one thread. The remaining results also satisfy our expectations.
Without any form of synchronisation, observers can be added and removed during
the notification process. When using only synchronised methods, the implemen-

206 Chapter 6. Verification of Dynamic Constraints

tation can possibly cause deadlock. The Java and AspectJ implementations that
use a synchronised block (in which the state is updated and a copy is made of the
collection of registered observers) satisfy both our properties.

The number of final states actually corresponds to the different number of regis-
tered observers after execution is finished. This should correspond to the product
of the number of threads and the number of actions (the maximum number of
calls to the addObserver(Observer) method) plus one (0 observers).

The number of states explodes when we introduce concurrency by increasing the
number of threads. Comparing the 2-action simulations of the java implementation
with one thread and two threads, one could expect the number of states in the
2-thread simulation to have an upper bound of 98 x 98 = 9604. This would
be true if both threads executed independently. However, data sharing amongst
threads creates whole new states and executions, thereby increasing the number of
states slightly more. When synchronisation is used, this number is again limited
to a certain extend. We can, however, conclude that the simulation scales with
the number of threads by s! , with s the number of states in a single-threaded
simulation and t the number of threads. With three threads and two actions,
the minimal size of the state space becomes 941192 (98 x 98 x 98). This can be
simulated, but it requires a good amount of memory and patience (or a very fast
machine).

Each action causes a choice between the three different methods of the observer
pattern implementation. Each time the simulation can choose, three branches are
created. After each choice, each branch executions a method. When the method is
finishes, another choice can be made. When simulating one action and with thread,
the number of method bodies that are executed is 3'. When simulating two actions
with one thread, the number increases to 3! + 32. In our experimentation results,
the states spaces do not increase to that extend. In fact, the state space doubles
in size. This is because a lot of branches merge during simulation because the
resulting graphs are isomorphic. This reducing the size of the state space. Also,
simulation involves a fixed amount of transitions taking care of initialisation.

In comparing the simulations of Java and AspectJ variations, we can see that
AspectJ simulation takes slightly more transitions. The cause of this is an extra
frame life-cycle for each joinpoint (i.e. frame creation, invocation, and exit). Also,
some extra transitions are needed for creating an aspect instance the first time it
is needed, and resolving it afterwards.

6.7. Evaluation of the Approach 207

6.7 Evaluation of the Approach

In this section we evaluate our approach regarding the outstanding requirements
formulated at the start of the chapter. We also give some remarks about the
scalability issues of the approach. We base our evaluation on the experiments
performed regarding the observer pattern.

6.7.1 Java and AspectJ support

We have shown the simulation of both Java and Aspect]J specifications. The
program and run-time models used for the approach can be used as a common
model for most features of a lot of object-oriented languages. In fact, it is largely
inspired by the work presented in [KKROG].

AspectJ programs can partially be represented as regular programs. Introductions
for example do not have a special run-time semantics; they merely specify a trans-
formation of the program specification. Once this transformation is resolved, the
representation of the program as a graph is that of a typical Java program.

Pointcuts and advices do require some extensions to the Java program model.
Pointcuts are represented as extensions of signatures, whereas advices are rep-
resented as special methods. During simulation, special rules are applied for
matching pointcuts and invoking the corresponding advices. During execution,
the run-time state representation of Java programs can be used to express As-
pectd executions as well.

6.7.2 Ability to Verify Dynamic Constraints

We can verify properties of a design on existing implementations by specifying
additional rules on the static structure and run-time state representation. Using
this approach, we can add information to the states, to keep track of past events
or required future events.

We have illustrated this for such events regarding the observer pattern. The
occurrence of a state change is detected, and information is added to the state to
keep track of the observers that need to receive a notification. Then, by detecting
such notifications and the moment notification should be completed, we can reason
if any notification problems occur.

We have equipped our execution semantics with support for multi-threading and
synchronisation. Thereby, we are able to verify these properties in multi-threaded
execution. The non-deterministic exploration character of graph transformations
allows to easily simulate all possible interleavings of a concurrent system. Every

208 Chapter 6. Verification of Dynamic Constraints

program counter will be matched by a rule. This allows us to verify the specified
properties in a concurrent setting.

6.7.3 Implementation Independence

Properties that need to be verified are specified as events related to certain objects
in the heap and stack. The events can be recognised using the roles identified in the
harness. Thus, once the syntax elements with these roles are identified, verification
is done independent of the implementation.

We have illustrated this by our ability to verify some properties for different im-
plementations using Java and AspectJ. The rules required for this verification are
largely based on specific heap and stack structures that relate to program elements
that are identified with role in the observer pattern.

6.7.4 Automation

To use the proposed approach to its full capacity, the verification must be (largely)
automatic. When integrated into the software build process, this ensures that
changes do not break properties of the system.

We have shown how a transition system can be generated by an abstract execution
of part of the system. Once generated, this LTS can be analysed for the occurrence
(as illustrated in the example) certain labels do not occur, or for model checking.
Both these analysis methods are easily automated.

The properties need to be specified by hand; once specified, these rules are reusable
for different implementations. One should keep that in mind while formulating
the requirements as graph transformation rules, to not specify properties in an
implementation-specific way.

The missing part to make this approach automatic is tool support for compiling
source code to graph representation. The challenging part of implementing these
tools is to resolve the relevant part of the source code, and needs to be represented
in the graph. Annotations can be used for this purpose. For example, a certain
field can be given an annotation that specifies it has the state role. A class can be
annotated with the subject role. This information can be used by the compiler to
extract the relevant source code. Warnings can be issued by the compiler about
the occurrence of missing annotations.

6.8. Conclusions 209

6.7.5 Scalability

We have listed some scalability results in Section [6.6] As we have stated, the
approach does not scale very well when simulating concurrent systems. It then
requires to find a suitable pseudo-program — an abstract execution of the code
of interest — that represents all scenarios where failure may occur. In our ex-
ample, simulation of three threads is not possible for most scenarios due to the
corresponding size of the state space.

6.8 Conclusions

6.8.1 Related Work

While there are many ways to verify software, (such as model checking, testing,
or using assertions), checking run-time properties that require tracking of indi-
vidual objects is even harder when dealing with aspects-oriented programming.
To our knowledge, no verification technique exists that is able to work under the
assumption that implementation may change from an object-oriented to an aspect-
oriented representation. However, there are some approaches worth mentioning,
that are commonly used to verify (concurrent) systems. We discuss model checkers
and run-time verification approaches.

Model checking

In model checking of Java and AspectJ programs can can be done by using tools
such as Java Pathfinder [RSEGO8] (JPF). JPF is used as an explicit state soft-
ware model checker, systematically exploring all potential execution paths of a
program to find violations of properties like deadlocks or unhandled exceptions.
Two problems arise when using model checkers. First, it requires precise knowl-
edge of the AspectJ weaver to understand the resulting byte-code given a cer-
tain AspectJ specification. This complicates the specification of properties in a
language-independent manner. Second, it is not possible to track individual ob-
jects between states. The properties we have shown in this Chapter cannot be
verified using regular model checking approaches.

Run-time verification

Run-time verification [KVK™04] was proposed as a light-weight formal method
applied during program execution. The program that is analysed is instrumented

210 Chapter 6. Verification of Dynamic Constraints

with verification logic, such as assertions or pre- and post-conditions. While run-
ning the program, the verification logic checks for violations of properties. Com-
pared to our approach, these approaches have two main disadvantages. First,
it is hard to verify all executions of the program. While some approaches use
backtracking to execute different inputs, running the code in a standard execution
environment does not give enough control over the execution to verify all possible
inter-leavings of different threads. Second, assertions and pre- and post-conditions
typically have a local view on the state of the system. For checking dynamic prop-
erties, these programs are required to maintain a global state representation. In
our approach, the graph transformation rules have global access to the run-time
state. Any additional information required can easily be added to the graph. Also,
having to work with actual run-time states (i.e. not having a common abstract
run-time representation) makes it very difficult to use run-time verification for
both Java and AspectJ.

In general, graph transformation provide is a practical way to simulate all possi-
ble executions of a program combined with the ability to specify conditions and
properties based on a global run-time state (i.e. without having to maintain a sep-
arate representation of this state). Also, because it is not based on a real virtual
machine, a run-time state representation can be chosen that is suitable for both
Java and AspectJ.

Observer Pattern

A general reference to the observer patterns can be found in [GHIV95]. A discus-
sion on observer pattern implementation using AspectJ can be found in [HK02].
The problems concerning observer pattern implementations that were addressed
in this chapter are largely inspired by [Lee06].

6.8.2 Future Work

The semantics given in this chapter is a partial execution semantics for Java and
AspectJ. To use the proposed approach to its full potential, a complete semantics
of Java and AspectJ is required; for Java, specification of a complete semantics is
currently in progress.

Other instantiation strategies require that aspect instances are stored using the
value graph model of the base language, i.e. by using Var an VarSlot nodes. For
example, singleton aspect can be stored in a static instance variable of the aspect
class.

6.8. Conclusions 211

6.8.3 Contributions

We have proposed to verify dynamic properties of systems using simulation. The
proposed approach uses a graph-transformation-based execution semantics. This
semantics can easily be used to simulate concurrent systems.

Verification of properties is done by specification of additional graph transforma-
tion rules that query the graph-based run-time state representation. If needed,
extra information can be added to the graphs to track individual objects over
time. Analysis can be done by looking at the existence of certain rule applications
in the simulation result.

The approach is easily extended to support aspect-oriented programming. Be-
cause the run-time state of the base system and the aspects are represented using
a common graph model, properties can be verified on different implementations.
Using the approach, implementations can be verified after software evolution cy-
cles, even when such cycles involve refactoring part of the implementation to the
aspect oriented paradigm.

The approach has been illustrated for a number of observer pattern implementa-
tions and three properties of the execution that may fail when the implementation
is used in a concurrent setting.

Chapter 7

Conclusions

7.1 Introduction

In this chapter, we highlight the contributions of the research presented in this
thesis. In Chapter [I] we have introduced the basic concepts of the aspect-oriented
programming paradigm. Its core features are quantification and obliviousness.
With quantification we mean the ability to select elements of other modules and
to add additional behaviour to these elements. Obliviousness means that you
can’t tell from looking at base code that aspect code will be executed. We have
explained the benefits of AOP, that are directly related to its ability to improve
separation of concerns.

In this thesis, we focus on a number of disadvantages of AOP. Where obliviousness
has clear benefits towards the understandability of individual modules, it compli-
cates the understandability of the system as a whole. This has a negative impact
on other software engineering qualities of software, such as maintainability and
evolvability. We have stressed the need for automatic verification approaches for
aspect-oriented programming languages.

For verification, the general approach that is used in this thesis is the specification
of execution semantics of languages. The method of choice for these specifications
is graph transformation. They can be used for simulation of programs, and exposes
the reactive behaviour of a program in the form of a graph transition system (GTS).
This GTS is then used for formal verification of the simulated program.

213

214 Chapter 7. Conclusions

7.2 Controlled Graph Transformation

The work presented in Chapter [2]is not directly related to AOP. In this chapter,
we address the problem of controlling rule application when using rule-based spec-
ification techniques. Rules are stand-alone entities; they require to specify exactly
the conditions required for the rule to be applied. Such conditions may become
very complex and may use control information that is added to the state by other
rules. Such information quickly complicates the comprehensibility of the entire
rule system, and introduces hidden dependencies between rules.

The contribution of this chapter is the definition of control expressions for rule-
based systems with a reactive semantics.

We have defined an intuitive language to express control programs over sets of
rules. The semantics of the language is described as the control automata that
represent programs written in the language. We have defined construction oper-
ations from language construct to control automata. The resulting behaviour is
defined as the product with a system automaton (an automaton representation
of the uncontrolled rule system). The result is a reactive semantics for control
expressions. We have explained how the defined product operation can introduce
spurious non-determinism and how this can be harmful. To solve this issue, we
have introduced a formalism for guarded control automata and the corresponding
product operation, that — when applied to a deterministic system automaton
— results in a deterministic controlled system automaton. We have proved that
the languages of products using a normal and the corresponding guarded control
automaton coincide.

The work has been implemented in the GROOVE Tool Set for graph transformation-
based specification and simulation.

Some valuable future extensions to the developed language are named procedures,
atomic transactions, and parameterized rule applications.

7.3 Graph-Based Specification of AOP Execution
Semantics

In this thesis, we address the understandability problem of aspect-oriented pro-
gramming languages by specifying its execution semantics using graph transfor-
mations.

We have performed this task for three different languages, that all share the fol-
lowing main contributions:

7.3. Graph-Based Specification of AOP Execution Semantics 215

e Understandability: We believe that the visual nature of the graph transfor-
mation rules will appeal to many readers that are not experts in mathemat-
ics. This benefits to understanding a language based on the given semantics.
The fact that aspect-oriented programs as a whole can be hard to understand
increases the need for means to assist in this matter.

o Analysability: By giving the semantics in this way, the road is opened to-
wards applying existing verification methods. Also, the labelled transition
systems that result from simulation can directly be used for model checking.

We now describe the main properties of each of the specified semantics, and the
main contributions of the work involved:

7.3.1 Composition Filters

In Chapter [3| we have specified the execution semantics of Composition Filters
(CF). The semantics described a control flow semantics and run-time semantics
for filter matching, and a run-time semantics for the actions performed by the
filters to manipulate the base program. No base language semantics is defined.

The main contributions are:

e The defined semantics can be used as a reference semantics for Composition
Filters. Before, the run-time behaviour of the language was merely given
informally, using natural language.

e The semantics can be used to simulate the execution of filter modules in
a modular (i.e. without having a concrete base system). The nature of
Composition Filters provides means to represent only an abstraction of the
base program.

e Defining a control flow semantics has learned us that the control flow of
Composition Filters is not very straight-forward. In fact, we have defined
and used an improved abstract syntax model for filter modules to simplify
the control flow semantics. We propose this model as an improvement for
the language.

7.3.2 Featherweight AspectJ

In Chapter [4] we defined an execution semantics for a base language and an aspec-
tual extension. The base language is Featherweight AspectJ with assignments; the
aspectual extension consists of method call pointcuts and around advice with a

216 Chapter 7. Conclusions

proceed statement. The semantics can be used to simulate the entire execution of
a program specified in the language. We have shown a correspondence relationship
with a reference semantics, that formally describes the same

The main contributions are:

e We have demonstrated that a graph transformation based operational se-
mantics is a formal speci

cation technique and can be complete with respect to a certain reference
semantics.

e We have shown that using graph-transformation for the specification of oper-
ational semantics benefits rigorness. The directly executable nature increases
ease and confidence of specification of a semantics by giving the user a way
to test the semantics without having to write a interpreter first, which may
contain errors either copied from the semantics or made during implemen-
tation.

7.3.3 Java and Aspect]J

In Chapter [0} we have defined an execution semantics for a subset of Java, largely
based on an existing semantics. We have extended this semantics to support:
(1) multi-threading and locking mechanisms; (2) a subset of AspectJ. The main
contribution of the semantics is the definition of a multi-threading model using
graph-transformations. We have demonstrated that this can be used to simulate
all interleavings of a program.

7.3.4 Future Work

None of these semantics specifies all features of an aspect-oriented language, or
lacks a full base language semantics. Future work in the developing formal verifica-
tion techniques for aspect-oriented languages can greatly benefit from an execution
semantics of a popular aspect-oriented programming language such as AspectJ (in-
cluding Java), with no limitations whatsoever.

7.4 Analysis of Aspect Interference on Shared Joinpoints

In Chapter [5| we address the problem of aspect interference on shared joinpoints.
Two or more aspects behaving correctly when applied in isolation, may interact in
an undesired matter when applied together. We have identified data interference,

7.5. Analysis of System Properties under Concurrent Execution 217

control interference and scheduling interference, and have illustrated the first two
by means of an example.

We have proposed an approach that involves simulation of all different advice
orderings at such joinpoints. We use confluence analysis to detect if the order of
execution affects the resulting state.

We have illustrated the approach for Composition Filters. Therefore, we have
extended the semantics of Chapter [3] to support the approach. The approach in
general is applicable also to other aspect-oriented languages. We have explained
the implications of implementing the approach for languages like AspectJ.

The analysis of aspects is done independently of the base system, making the
approach more scalable. If desired, however, the analysis can also be applied on a
concrete program with aspects. For example, the approach is directly applicable
using the semantics defined in Chapter

The presented verification method can be applied to other aspect-languages. How-
ever, this requires that the semantics of these languages are specified using graph
transformations, which — for many AO languages — requires the specification of
the complete base language (i.e. Java or C#). Therefore, a highly recommended
topic for future work is a full base language semantics.

Also, scalability can be improved by researching different possibilities for optimi-
sation.

7.5 Analysis of System Properties under Concurrent
Execution

In Chapter [6] we focused on verification of dynamic properties that require tracking
of individual objects over time.

We have stressed the need for automatic verification of such properties, as its
benefits correctness. This is even more the case when using aspect-oriented pro-
gramming, as the obliviousness of AOP can cause unintended mistakes during
refactoring.

The proposed approach involves augmenting an existing execution semantics with
rules that describe the properties of state that are interesting for verification. If
needed, information can be added to the states to “tag” objects. This information
can then be read by verification rules that are applicable at a later moment.

The properties are described in a language-independent way, by referring to objects
that are tagged with certain roles. Thereby, the approach is very tolerant w.r.t.
implementation details, even when this involves refactoring from the OOP to the

218 Chapter 7. Conclusions

AQOP paradigm.

We have illustrated the approach for a number observer pattern requirements on
different implementations.

Future work requires an in-depth study of the characteristics of these ”"modal
object-constraints” and the development of a full verification approach, whereas
in this thesis we merely described the problem and illustrated the approach by an
example.

7.6 Reflection and Future Work

Graph transformations have proven to be an intuitive way to specify systems, and
in particular object-oriented languages and programs. Using boxes for entities
and edges for relationships between entities are not uncommon to many people;
many have already used modelling languages like the UML. Personally, the author
believes that the graphical notation is easier to learn to understand then textual
formal specification languages. Using graphs for the purpose of specifying pro-
grams and semantics, however, requires a generator for the actual graphs, and
proper support for debugging, because the graphs themselves easily grow too big
to "read”. Once familiarised, graphs and graph transformations are just a lot of
fun.

The rule control language described in Chapter [2] has already proved itself even
for different purposes then the intended specification improvements. In [Cir09],
control expressions are used for checking CTL (like) expressions on-the-fly. For
the authors, it has been a useful improvement for specifying readable graph-based
operational semantics. A negative remark: we have not used the control language
for any of the semantics in this thesis. The reason for this is that the control
language was developed after having specified the semantics.

In Chapters [3] [4 and [6], we have used graph transformations for the specification
of an operational semantics of different aspect-oriented languages. However, we
have managed to specify only a portion of all features of a small number of aspect-
oriented languages. There are many different aspectual extensions, some of which
can even be used in conjunction with different object-oriented languages. The
large variety of aspect-oriented composition features that exists, and the even
larger number of ways to specify these compositions, is an indication that people
in the field of language design are still struggling with a better way to achieve
separation of concerns.

For aspect-oriented programming to grow into the next-generation programming
paradigm, we feel a big step is needed into a paradigm where the composition
mechanisms of object-oriented and aspect-oriented programming into an inte-

grated whole of the best of both. In the introduction, we have already mentioned
symmetric AOP; where this comes closer to a “grand vision” of AOP. Sadly, asym-
metric AOP (i.e. extending an existing system with some features) has turned out
to be more pragmatic. We like to add ”in the short term” to this sentence. The
common practice of implementing aspect-oriented features on object-oriented vir-
tual machines, has withheld us from taking that one large step further.

The verification approaches in this thesis (Chapter |5 and @ are applicable to a
number of these aspect languages. Each of these semantics has at least some limit
w.r.t. its completeness or the usefulness of the specified language. Above we have
mentioned that in future work, a more complete semantics of an accepted language
like Aspectd is required. However, we feel that the most important benefit of
such research lies in creating awareness of complications of the novel composition
mechanisms that AOP offers. Future work may then lead to the checking of the
described issues in aspect-oriented compilers.

219

Samenvatting

Aspect-gedrienteerde software ontwikkeling is geintroduceerd als middel om de
modulariteit van software te verbeteren tijdens alle stadia van het software on-
twikkelproces, van architectuur tot implementatie. Aspect-gedrienteerd program-
meren biedt bovenal de mogelijkheid om zogeheten ”crosscutting concerns” op
code niveau op modulaire wijze te specificeren.

In dit proefschrift trachten we verificatietechnieken te ontwikkelen voor aspect-
georienteerde programmeertalen in het bijzonder. Daarvoor modelleren we het
gedrag van zulke talen als een operationele semantiek. We gebruiken graaf trans-
formaties om deze semantieken te specificeren. Graaf transformaties hebben een
wiskundige grondslag and bieden een intuitieve manier om componentgebaseerde
systemen — zoals software systemen — te beschrijven. Daarnaast hebben graaf
transformaties een uitvoerbaar karakter en kunnen ze worden gebruikt voor het
genereren van een toestandsdiagram van de uitvoering van programma’s. Deze
toestandsdiagrammen gebruiken we voor de verificatie van met behulp van as-
pecten geimplementeerde programma’s.

We beginnen met het definiéren van een uitbreiding op de specificatie van regel-
gebaseerde systemen. Pure regelgebaseerde systemen bestaan normaliter uit een
ongestructureerde verzameling regels. Het gedrag van zulke systemen komt neer
op het mogen toepassen van iedere regel in elke toestand. Regels kunnen zodoende
alleen gedwongen worden in een bepaalde volgorde te worden toegepast door spe-
ciale elementen toe te voegen aan de toestanden, waarop vanuit de regels wordt
getest. Met andere woorden, controle op regeltoepasbaarheid is niet expliciet,
maar moet worden gecodeerd in de toestand; dit reduceert de begrijpelijkheid en
onderhoudbaarheid van regelgebaseerde systemen in zijn geheel. We introduceren
zogenaamde controle automaten die kunnen worden toegevoegd aan pure regelge-

221

baseerde systemen. Het resulteren gedrag is gedefinieerd als het product van de
oorspronkelijk toestandruimte en de controle automaat. Onze controle automaten
bevatten zogenaamde mislukkingtransities, waarmee de ontoepasbaarheid van éen
of meer regels kan worden gerepresenteerd. Het resultaat is een reactieve semantiek
voor controle expressies, dat zich onderscheidt van de gebruikelijke invoer-uitvoer
semantiek. Controle automaten kunnen kunstmatig non-determinisme introduc-
eren. Om dit ongewenste effect te vermijden introduceren we bewaaktec ontrole
automaten, en we definiéren een semantiekbehoudende transformatie van normale
naar bewaakte controle automaten.

In het volgende deel van het proefschrift beschrijven we de run-time semantiek
van een aantal aspect-gedrienteerde programmeertalen, te weten (1) Composition
Filters, (2) Lightgewicht Java met assignment en een aspect-gedrienteerde uitbrei-
ding en (3) een deel van Java met meerdere threads en een deel van AspectJ. We
laten zien hoe graafgebaseerde semantieken kunnen helpen bij het begrijpen van
het run-time gedrag van een programmeertaal. Bovendien laten we zien dat zo’n
semantiek can worden gebruikt om een (gedeeltelijk) programma te simuleren en
dat we daarbij de afzonderlijke stappen van het programma zichtbaar maken. We
illustreren dat de uitvoerbare natuur van graaf transformaties de strictheid van
de specificatietechniek ten goede komt; fouten kunnen eenvoudig worden gede-
tecteerd door de simulatie uit te voeren. Als laatste laten we zien dat de uit de
simulatie gelabelde transitiesysteem gebruikt kan worden voor bestaande verifi-
catie technieken.

Daarna introduceren we twee nieuwe manieren voor het addresseren van compli-
caties veroorzaakt door het gebruik van aspect-georienteerd programmeren.

De eerste aanpak richt zich op een probleem dat zich voordoet in verschillende
aspect-georienteerde talen. Aspecten die afzonderlijk correct functioneren, kunnen
interactie vertonen wanneer te worden gecombineerd. Wanneer zulke interactie het
gedrag van aspect beinvloed of een aspect uitschakelt, noemen we dit interferentie.
Een specifiek type interferentie vindt plaats wanneer twee aspecten van worden
toegepast op een gedeeld verbindingspunt (join point), omdat dan de volgorde
van uitvoeren van de aspecten het samengestelde gedrag kan beinvloeden. We
presenteren een aanpak voor het detecteren van zulke interferentie van aspecten
op gedeelde verbindingspunten. De aanpak is gebaseerd op het simuleren van alle
mogelijke volgordes van de door de verschillende aspecten uitgevoerde functies
gekoppeld aan een gedeeld verbindingspunt. Een analyse van de confluentie van
de resulterende toestandsruimte wordt uitgevoerd om te detecteren of de volgorde
de resulterende toestand heeft beinvloed.

De tweede aanpak richt zich op het verifiéren van dynamische eigenschappen van
systemen. Zulke eigenschappen kunnen alleen worden geverifiéerd door het uitvo-
eren van het systeem te simuleren: een uitvoer semantiek is benodigd. Meer in het
bijzonder richten we ons op eigenschappen waarvoor het benodigd is individuele

222

objecten over de tijd te traceren. We benadrukken de noodzaak om zulke eigen-
schappen bij het gebruik van aspect-orientatie automatisch te kunnen verifiéren
vanwege de onbewustheid-eigenschap van aspecten: een ontwikkelaar kan aan het
basisprogramma niet zien dat er aspecten op van toepassing zijn. Wanneer de
software zich wordt gewijzigd kan bestaande functionaliteit onbedoeld stuk raken.
We stellen voor om bestaande uitvoersemantiek uit te breiden met speciale verifi-
catieregels. Deze regels kunnen indien nodig informatie toevoegen aan de grafen
om bepaalde objecten te kunnen volgen. Eigenschappen zijn gemodelleerd als
interacties tussen objecten met een bepaalde rol. Zodra de objecten met deze
rollen zijn geidentificeerd kan een programma worden geverifiéerd, ongeacht hoe
deze is geimplementeerd. We laten zien dat de aanpak toepasbaar is op zowel
object-geodrienteerde als aspect-georienteerde programma’s.

223

Bibliography

[ABV92]

[ARS09)

[ATSS]

[AWB+93]

[BAO4]

M. Aksit, L. Bergmans, and S. Vural. An object-oriented language-
database integration model: The composition-filters approach. In
O. Lehrmann Madsen, editor, Proceedings of the 7th European Con-
ference on Object-Oriented Programming (ECOOP), pages 372-395.
Springer-Verlag Lecture Notes in Computer Science, 1992.

Mehmet Aksit, Arend Rensink, and Tom Staijen. A graph-
transformation-based simulation approach for analysing aspect in-
terference on shared join points. In AOSD ’09: Proceedings of the
8th ACM international conference on Aspect-Oriented Software De-
velopment, pages 39-50, New York, NY, USA, 2009. ACM.

M. Aksit and A. Tripathi. Data Abstraction Mechanisms in
SINA/ST. In Proceedings of the conference Object-oriented Program-
ming, Systems, Languages, and Applications (OOPSLA), volume 23,
pages 267-275. ACM Sigplan Notices, 1988.

Mehmet Aksit, K. Wakita, J. Bosch, L. M. J. Bergmans, and
A. Yonezawa. Abstracting object interactions using composition fil-
ters. In R. Guerraoui, O. Nierstrasz, and M. Riveill, editors, Object-
Based Distributed Processing, volume 791 of Lecture Notes in Com-
puter Science, pages 152—-184. Springer Verlag, London, 1993.

L. Bergmans and M. Aksit. Principles and design rationale of com-
position filters. In R. Filman, T. Elrad, S. Clarke, and M. Aksit,
editors, Aspect Oriented Software Development, pages 63-95. Addi-
son Wesley, Boston, 2004.

225

[BHR34]

[BJJRO4]

[BKKMO02]

[CDE+02]

[CDFR04]

[CGPYY]

[Cir09]

[CL02]

[CLOS]

[CLWO03]

Stephen D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of
communicating sequential processes. J. ACM, 31(3):560-599, 1984.

Glenn Bruns, Radha Jagadeesan, Alan Jeffrey, and James Riely.
pABC: A minimal aspect calculus. In In Concur, pages 209-224.
Springer, 2004.

Peter Borovansky, Claude Kirchner, Hélene Kirchner, and Pierre-
Etienne Moreau. ELAN from a Rewriting Logic Point of View.
Theor. Comput. Sci., 285(2):155-185, 2002.

M. Clavel, F. Durdn, S. Eker, P. Lincoln, N. Marti-Oliet,
J. Meseguer, and J. F. Quesada. Maude: specification and pro-
gramming in rewriting logic. Theor. Comput. Sci., 285(2):187-243,
2002.

Andrea Corradini, Fernando L. Dotti, Luciana Foss, and Leila
Ribeiro. Translating java into graph transformation systems. In
Hartmut Ehrig, Gregor Engels, Fransesco Parisi-Presicce, and Grze-
gorz Rozenberg, editors, Second International Conference on Graph
Transformation (ICGT), volume 3256 of Lecture Notes in Computer
Science, pages 383-389. Springer-Verlag, 2004.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model
Checking. The MIT Press, 1999.

S. Ciraci. Graph Based Verification of Software Evolution Require-
ments. PhD thesis, Univ. of Twente, Enschede, November 2009.

Curtis Clifton and Gary T. Leavens. Observers and assistants: A
proposal for modular aspect-oriented reasoning. In Ron Cytron
and Gary T. Leavens, editors, FOAL 2002: Foundations of Aspect-
Oriented Languages (AOSD-2002), pages 33—44, March 2002.

Curtis Clifton and Gary T. Leavens. MiniMAO: Investigating the
semantics of proceed. In Curtis Clifton, Ralf Lammel, , and Gary T.
Leavens, editors, FOAL 2005 Proceedings: Foundations of Aspect-
Oriented Languages Workshop at AOSD 2005, Chicago, IL, number
05-05 in TR, pages 57-67, Ames, IA, 50011, March 2005. Dept. of
Computer Science, lowa State University.

Curtis Clifton, Gary T. Leavens, and Mitchell Wand. Formal defini-
tion of the parameterized aspect calculus. Technical Report 03-12b,
Iowa State University, Department of Computer Science, November
2003.

226

[DDFO8]

[Der05]

[DFS02]

[Dij74]

[Dij82]

[DKO06]

[DSBAO5]

[EEKR99)]

[EEKRO0]

[EHK*97]

Simplice Djoko Djoko, Rémi Douence, and Pascal Fradet. Special-
ized aspect languages preserving classes of properties. In SEFM
’08: Proceedings of the 2008 Sizth IEEE International Conference
on Software Engineering and Formal Methods, pages 227-236, Wash-
ington, DC, USA, 2008. IEEE Computer Society.

Nachum Dershowitz. Term rewriting systems by “terese” (marc
bezem, jan willem klop, and roel de vrijer, eds.), cambridge uni-
versity press, cambridge tracts in theoretical computer science 55,
2003, hard cover: Isbn 0-521-39115-6, xxii+-884 pages. Theory Pract.
Log. Program., 5(3):395-399, 2005.

Rémi Douence, Pascal Fradet, and Mario Siidholt. A framework
for the detection and resolution of aspect interactions. In 1st Conf.
Generative Programming and Component Engineering, volume 2487
of Lecture Notes in Computer Science, pages 173-188, Berlin, 2002.
Springer-Verlag.

Edsger W. Dijkstra. On the role of scientific thought. published as
[Dij82], August 1974.

Edsger W. Dijkstra. On the role of scientific thought. In Se-
lected Writings on Computing: A Personal Perspective, pages 60—66.
Springer-Verlag, 1982.

Eyal Dror and Shmuel Katz. The revised architecture of the cape. In
Deliverable 42, AOSD-Europe, EU Network of Fxcellence in AOSD,
August 2006.

Pascal Durr, Tom Staijen, Lodewijk Bergmans, and Mehmet Ak-
sit. Reasoning about semantic conflicts between aspects. In ETWAS
2005: 2nd European Interactive Workshop on Aspects in Software,
2005.

Hartmut Ehrig, Gregor Engels, Hans-Jorg Kreowski, and Grzegorz
Rozenberg, editors. Handbook of Graph Grammars and Computing
by Graph Transformation, volume II: Applications, Languages and
Tools. World Scientific, Singapore, 1999.

Hartmut Ehrig, Gregor Engels, Hans-Jorg Kreowski, and Grzegorz
Rozenberg, editors. Theory and Application of Graph Transforma-
tions (TAGT), volume 1764 of Lecture Notes in Computer Science.
Springer, 2000.

H. Ehrig, R. Heckel, M. Korff, M. Léwe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic approaches to graph transformation. part

227

[EPS73]

[FF05]

[FNTZ00]

[GHIV95]

[GKO7]

[GR82

[Hau06]

[HHT96]

[HK02]

[HNBAO7]

ii: single pushout approach and comparison with double pushout
approach. In Handbook of graph grammars and computing by graph
transformation: volume I. foundations, pages 247-312, River Edge,
NJ, USA, 1997. World Scientific Publishing Co., Inc.

H. Ehrig, M. Pfender, and H. J. Schneider. Graph-grammars: An
algebraic approach. Foundations of Computer Science, Annual IEEE
Symposium on, 0:167-180, 1973.

Robert E. Filman and Daniel P. Friedman. Aspect-oriented program-
ming is quantification and obliviousness. In Robert E. Filman, Tzilla
Elrad, Siobhén Clarke, and Mehmet Aksit, editors, Aspect-Oriented
Software Development, pages 21-35. Addison-Wesley, Boston, 2005.

Thorsten Fischer, Jérg Niere, Lars Torunski, and Albert Ziindorf.
Story diagrams: A new graph rewrite language based on the unified
modeling language and Java. In Ehrig et al. [EEKR00], pages 296
309.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns. Addison-Wesley, Boston, MA, January 1995.

Max Goldman and Shmuel Katz. Maven: Modular aspect verifica-
tion. In Orna Grumberg and Michael Huth, editors, TACAS, volume
4424 of Lecture Notes in Computer Science, pages 308-322. Springer,
2007.

Claude Girault and Wolfgang Reisig, editors. Application and The-
ory of Petri Nets, Selected Papers from the First and the Second
European Workshop on Application and Theory of Petri Nets, Stas-
bourg 23.-26. September 1980, Bad Honnef 28.-30. September 1981,
volume 52 of Informatik-Fachberichte. Springer, 1982.

Jan Hendrik Hausmann. Dynamic Meta Modelling: A Semantics
Description Technique for Visual Modeling Languages. PhD thesis,
University of Paderborn, Germany, 2006.

Annegret Habel, Reiko Heckel, and Gabriele Taentzer. Graph
grammars with negative application conditions. Fundam. Inform.,
26(3/4):287-313, 1996.

Jan Hannemann and Gregor Kiczales. Design pattern implementa-
tion in java and aspectj. SIGPLAN Not., 37(11):161-173, 2002.

Wilke Havinga, Istvan Nagy, Lodewijk Bergmans, and Mehmet Ak-
sit. A graph-based approach to modeling and detecting composi-
tion conflicts related to introductions. In AOSD ’07: Proceedings

228

[Hoa85]

[HPO1]

[HPO5]

[IPW99)]

[Jan99]

[JHA*]

[JJRO3]

[Kas08]

[Kat06)

of the 6th international conference on Aspect-oriented software de-
velopment, Vancouver, Canada, pages 85-95, New York, NY, USA,
2007. ACM Press.

C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall,
1985.

Annegret Habel and Detlef Plump. Computational completeness of
programming languages based on graph transformation. In Founda-
tions of Software Science and Computation Structures (FoSSaCS),
volume 2030 of Lecture Notes in Computer Science, pages 230-245.
Springer, 2001.

Annegret Habel and Karl-Heinz Pennemann. Nested constraints and
application conditions for high-level structures. In Hans-Jorg Kre-
owski and et al., editors, Formal Methods in Software and Systems
Modeling, volume 3393 of Lecture Notes in Computer Science, pages
293-308. Springer, 2005.

Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Feather-
weight java: A minimal core calculus for java and gj. In ACM
Transactions on Programming Languages and Systems, pages 132—
146, 1999.

D. Janssens. Actor grammars and local actions. In Grzegorz Rozen-
berg, Hartmut Ehrig, et al., editors, Handbook of Graph Grammars
and Computing by Graph Transformation, volume III: Parallelism,
Concurrency and Distribution, chapter 2, pages 57-106. World Sci-
entific, Signapore, 1999.

Rod Johnson, Juergen Hoeller, Alef Arendsen, Colin Sampaleanu,
Rob Harrop, Thomas Risberg, Darren Davison, Dmitriy Kopylenko,
Mark Pollack, Thierry Templier, Erwin Vervaet Portia Tung, Ben
Hale, Adrian Colyer, John Lewis, Costin Leau, and Rick Evans.
Aspect oriented programming with spring.

Radha Jagadeesan, Alan Jeffrey, and James Riely. A calculus of
untyped aspect-oriented programs. In In Furopean Conference on
Object-Oriented Programming, pages 54-73. Springer-Verlag, 2003.

H. Kastenberg. Graph-based software specification and verification.
PhD thesis, Univ. of Twente, Enschede, October 2008.

Shmuel Katz. Aspect categories and classes of temporal properties.
In Awais Rashid and Mehmet Aksit, editors, T. Aspect-Oriented
Software Development I, volume 3880 of Lecture Notes in Computer
Science, pages 106-134. Springer, 2006.

229

[KD02]

[KHH*01]

[KK96]

[KK99]

[KKO8]

[KKO09]

[KKRO6]

[Kni09)]

[KRO6]

Gregor Kiczales and Christopher Dutchyn. A semantics for advice
and dynamic join points in aspect-oriented programming. In ACM
Transactions on Programming Languages and Systems, pages 1-8,
2002.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey
Palm, and William Griswold. Getting started with AspectJ. Com-
mun. ACM, 44(10):59-65, 2001.

Hans-Jorg Kreowski and Sabine Kuske. On the interleaving semat-
ics of transformation units - a step into GRACE. In Janice E.
Cuny, Hartmut Ehrig, Gregor Engels, and Grzegorz Rozenberg, ed-
itors, Graph Gramars and Their Application to Computer Science
(TAGT), volume 1073 of Lecture Notes in Computer Science, pages
89-106. Springer, 1996.

Hans-Jorg Kreowski and Sabine Kuske. Graph transformation units
and modules. In Ehrig et al. [EEKR99], pages 607-638.

Emilia Katz and Shmuel Katz. Incremental analysis of interference
among aspects. In FOAL ’08: Proceedings of the Tth workshop on
Foundations of aspect-oriented languages, pages 29-38, New York,
NY, USA, 2008. ACM.

Emilia Katz and Shmuel Katz. Modular verification of strongly in-
vasive aspects: summary. In FOAL ’09: Proceedings of the 2009
workshop on Foundations of aspect-oriented languages, pages 712,

New York, NY, USA, 2009. ACM.

H. Kastenberg, A. G. Kleppe, and A. Rensink. Defining object-
oriented execution semantics using graph transformations. In
R. Gorrieri and H. Wehrheim, editors, Proceedings of the Sth IFIP
International Conference on Formal Methods for Open-Object Based
Distributed Systems, Bologna, Italy, volume 4037 of Lecture Notes
in Computer Science, pages 186—201, London, June 2006. Springer
Verlag.

Giinter Kniesel. Detection and resolution of weaving interactions.
Transactions on Aspect-Oriented Programming V, 2009. Special is-
sue on Aspect Dependencies and Interactions, edited by Ruzanna
Chitchyan, Johan Fabry, Shmuel Katz, Arend Rensink.

H. Kastenberg and A. Rensink. Model checking dynamic states in
groove. In A. Valmari, editor, Model Checking Software (SPIN),
Vienna, Austria, volume 3925 of Lecture Notes in Computer Science,
pages 299-305, Berlin, 2006. Springer-Verlag.

230

[Kus00]

[KVK*04]

[Lim02]

[LCCH96]

[Lee06]

[LJD04]

[LLMCO6]

[MPO5]

[NBAOS]

[PDS05)]

Sabine Kuske. More about control conditions for transformation
units. In Ehrig et al. [EEKRO00], pages 323-337.

Moonzoo Kim, Mahesh Viswanathan, Sampath Kannan, Insup Lee,
and Oleg Sokolsky. Java-mac: A run-time assurance approach for
java programs. Form. Methods Syst. Des., 24(2):129-155, 2004.

Ralf Ldmmel. A semantical approach to method-call interception.
In AOSD °02: Proceedings of the 1st international conference on
Aspect-oriented software development, pages 41-55, New York, NY,
USA, 2002. ACM.

M. Loewe, A. Corradini, A. Corradini, U. Montanari, U. Monta-
nari, F. Rossi, F. Rossi, H. Ehrig, H. Ehrig, R. Heckel, R. Heckel,
and M. L Owe. Algebraic approaches to graph transformation, part
i: Basic concepts and double pushout approach. In Handbook of
Graph Grammars and Computing by Graph Transformation, Vol-
ume 1: Foundations, pages 163—245. World Scientific, 1996.

Edward A. Lee. The problem with threads. IEEE Computer,
39(5):33-42, May 2006.

Bert Lagaisse, Wouter Joosen, and Bart De Win. Managing se-
mantic interference with aspect integration contracts. In Lodewijk
Bergmans, Kris Gybels, Peri Tarr, and Erik Ernst, editors, SPLAT:
Software engineering Properties of Languages for Aspect, March
2004.

Laszlé Lengyel, Tihamér Levendovszky, Gergely Mezei, and Hassan
Charaf. Model Transformation with a Visual Control Flow Lan-
guage. International Journal of Computer Science (IJCS), 1(1):45—
53, 2006.

Thomas Mglhave and Lars H. Peterseny. Assignment Featherweight
Java: Bringing mutable state to Featherweight Java. Master’s thesis,
University of Aarhus, 2005.

Istvan Nagy, Lodewijk Bergmans, and Mehmet Aksit. Composing
aspects at shared join points. In Andreas Polze Robert Hirschfeld,
Ryszard Kowalczyk and Mathias Weske, editors, Proceedings of In-
ternational Conference NetObjectDays (NODe), volume P-69 of Lec-
ture Notes in Informatics, Erfurt, Germany, Sep 2005. Gesellschaft
fiir Informatik (GI).

Renaud Pawlak, Laurence Duchien, and Lionel Seinturier. CompAr:
Ensuring safe around advice composition. In M. Steffen and G. Za-
vattaro, editors, Formal Methods for Open Object-Based Distributed

231

[Phi86]

[Plo81]

[P1u99]

[PS04]

[Ren04]

[Ren09]

[Roz97]

[RSBO4]

[RSEGOS]

[RvGO0g]

[Sch90]

Systems (FMOODS), volume 3535 of Lecture Notes in Computer
Science, pages 163-178, 2005.

Iain Phillips. Refusal testing. In Laurent Kott, editor, Automata,
Languages and Programming (ICALP), volume 226 of Lecture Notes
in Computer Science, pages 304-313. Springer, 1986.

G. D. Plotkin. A Structural Approach to Operational Semantics.
Technical Report DAIMI FN-19, University of Aarhus, 1981.

D. Plump. Term graph rewriting. In Ehrig et al. [EEKR99].

Detlef Plump and Ra Steinert. Towards Graph Programs for Graph
Algorithms. In In Proc. International Conference on Graph Trans-
formation (ICGT 2004, pages 128-143. Springer, 2004.

A. Rensink. The GROOVE Simulator: A Tool for State Space Gen-
eration. In J. L. Pfaltz, M. Nagl, and B. Bd&hlen, editors, Appli-
cations of Graph Transformations with Industrial Relevance (AG-
TIVE), volume 3062 of Lecture Notes in Computer Science, pages
479-485, Berlin, 2004. Springer Verlag.

Arend Rensink. Repotting the geraniums: On nested graph trans-
formation rules. In GT-VMT: Graph Transformation and Visual
Modeling Techniques, 2009.

Grzegorz Rozenberg, editor. Handbook of Graph Grammars and
Computing by Graph Transformation, volume I: Foundations. World
Scientific, Singapore, 1997.

Martin Rinard, Alexandru Salcianu, and Suhabe Bugrara. A classi-
fication system and analysis for interactions in aspect-oriented pro-
grams. In Foundations of Software Engineering (FOSE). ACM, Oc-
tober 2004.

NASA Ames Research Center Robust Software Engineering Group.
Java pathfinder, 2008.

Arend Rensink and Pieter van Gorp, editors. GraBaTs: Graph-
Based Tools: The Contest, 2008.

Andy Schiirr. Introduction to PROGRES, an attribute graph gram-
mar based specification language. In Manfred Nagl, editor, Graph-
Theoretic Concepts in Computer Science, volume 411 of Lecture
Notes in Computer Science, pages 151-165. Springer, 1990.

232

[Sch97]

[SEG09]

[SFO6]

[SKO3]

[SROS]

[SR09]

[SRKO6]

[Sta05]

[SVO0T]

[SWZ99]

[VBO7]

Andy Schiirr. Programmed graph replacement systems. In G. Rozen-
berg, editor, Handbook on Graph Grammars: Foundations, volume 1,
pages 479-546. World Scientific, 1997.

University of Twente Software Engineering Group. Compose*, 2009.

Maximilian Storzer and Florian Forster. Detecting precedence-
related advice interference. In ASE, pages 317-322. IEEE Computer
Society, 2006.

Marcelo Sihman and Shmuel Katz. Superimpositions and aspect-
oriented programming. The Computer Journal, 46(5):529-541,
September 2003.

Tom Staijen and Arend Rensink. A groove solution for the grabats’08
antworld case. In Rensink and van Gorp [RvGO§].

T. Staijen and A. Rensink. Graph-based specification and simulation
of featherweight java with around advice. In FOAL 09: Proceedings
of the 2009 workshop on Foundations of aspect-oriented languages,
Charlottesville, Virginia, USA, pages 25-30, New York, March 2009.
ACM.

R. Smelik, A. Rensink, and H. Kastenberg. Specification and con-
struction of control flow semantics. In J. Grundy and J. Howse, edi-
tors, Visual Languages and Human-Centric Computing (VL/HCC),
Brighton, U.K., pages 65—72, Los Alamitos, September 2006. IEEE
Computer Society Press.

T. Staijen. Towards safe advice: Semantic analysis of advice types
in compose™. Master’s thesis, University of Twente, April 2005.

Eugene Syriani and Hans Vangheluwe. Programmed graph rewrit-
ing with DEVS. In Manfred Nagl and Andy Schiirr, editors, Ap-
plications of Graph Transformations with Industrial Relevance (AG-
TIVE), Lecture Notes in Computer Science. Springer, 2007.

A. Schiirr, A. J. Winter, and A. Ziindorf. The PROGRES Approach:
Language and Environment. In Ehrig et al. [EEKR99], pages 487
550.

Déniel Varré and Andras Balogh. The model transformation

language of the VIATRA2 framework. Sci. Comput. Program.,
68(3):214-234, 2007.

233

[vdBCCO5)

[VisO1]

[VNS*06]

[WZL03]

[ZCvdBGO7]

592]

Klaas van den Berg, Jose Maria Conejero, and Ruzanna Chitchyan.
AOSD ontology 1.0 - public ontology of aspect-orientation. AOSD-
Europe-UT-01 D9, AOSD-Europe, May 2005.

Eelco Visser. Stratego: A language for program transformation
based on rewriting strategies. In RTA °01: Proceedings of the 12th
International Conference on Rewriting Techniques and Applications,
pages 357-362, London, UK, 2001. Springer-Verlag.

Attila Vizhanyo, Sandeep Neema, Feng Shi, Daniel Balasubrama-
nian, and Gabor Karsai. Improving the usability of a graph trans-
formation language. ENTCS, 152:207-222, 2006.

David Walker, Steve Zdancewic, and Jay Ligatti. A theory of as-
pects. In In ACM International Conference on Functional Program-
ming, pages 127-139. ACM Press, 2003.

Jing Zhang, Thomas Cottenier, Aswin van den Berg, and Jeff
Gray. Aspect composition in the motorola aspect-oriented model-
ing weaver. Journal of Object Technology, 6(7), August 2007.

Albert Ziindorf and Andy Schiirr. Nondeterministic control struc-
tures for graph rewriting systems. In Gunther Schmidt and Rudolf
Berghammer, editors, Graph-Theoretic Concepts in Computer Sci-
ence, volume 570 of Lecture Notes in Computer Science, pages 48—62.
Springer, 1992.

234

Titles in the IPA Dissertation Series since 2005

E. Abrahdm. An Assertional Proof
System for Multithreaded Java - Theory
and Tool Support- . Faculty of Math-
ematics and Natural Sciences, UL.
2005-01

R. Ruimerman. Modeling and Re-
modeling in Bone Tissue. Faculty of
Biomedical Engineering, TU/e. 2005-
02

C.N. Chong. Fxperiments in Rights
Control - FExpression and Enforce-
ment. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2005-03

H. Gao. Design and Verification of
Lock-free Parallel Algorithms. Faculty
of Mathematics and Computing Sci-
ences, RUG. 2005-04

H.M.A. van Beek. Specification and
Analysis of Internet Applications. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2005-05

M.T. Ionita. Scenario-Based System
Architecting - A Systematic Approach
to Developing Future-Proof System Ar-
chitectures. Faculty of Mathematics
and Computing Sciences, TU/e. 2005-
06

G. Lenzini. Integration of Analy-
sis Techniques in Security and Fault-
Tolerance. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-07

I. Kurtev. Adaptability of Model
Transformations. Faculty of Electri-

cal Engineering, Mathematics & Com-
puter Science, UT. 2005-08

T. Wolle. Computational Aspects of
Treewidth - Lower Bounds and Net-
work Reliability. Faculty of Science,
UU. 2005-09

O. Tveretina. Decision Procedures
for Equality Logic with Uninterpreted
Functions. Faculty of Mathematics
and Computer Science, TU/e. 2005-10

A.M.L. Liekens. Fuvolution of Fi-
nite Populations in Dynamic Environ-
ments. Faculty of Biomedical Engi-
neering, TU/e. 2005-11

J. Eggermont. Data Mining us-
ing Genetic Programming: Classifica-
tion and Symbolic Regression. Faculty
of Mathematics and Natural Sciences,
UL. 2005-12

B.J. Heeren. Top Quality Type Er-
ror Messages. Faculty of Science, UU.
2005-13

G.F. Frehse. Compositional Verifi-
cation of Hybrid Systems using Simu-
lation Relations. Faculty of Science,
Mathematics and Computer Science,
RU. 2005-14

M.R. Mousavi. Structuring Struc-
tural Operational Semantics. Faculty
of Mathematics and Computer Sci-
ence, TU/e. 2005-15

A. Sokolova. Coalgebraic Analysis
of Probabilistic Systems. Faculty of

Mathematics and Computer Science,
TU/e. 2005-16

T. Gelsema. Effective Models for the
Structure of pi-Calculus Processes with
Replication. Faculty of Mathematics
and Natural Sciences, UL. 2005-17

P. Zoeteweij. Composing Constraint
Solvers. Faculty of Natural Sciences,
Mathematics, and Computer Science,
UvA. 2005-18

J.J. Vinju. Analysis and Transfor-
mation of Source Code by Parsing and
Rewriting. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science, UvA. 2005-19

M.Valero Espada. Modal Abstrac-
tion and Replication of Processes with
Data. Faculty of Sciences, Division of

Mathematics and Computer Science,
VUA. 2005-20

A. Dijkstra. Stepping through
Haskell. Faculty of Science, UU. 2005-
21

Y.W. Law. Key management and
link-layer security of wireless sensor
networks: energy-efficient attack and
defense. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2005-22

E. Dolstra. The Purely Functional
Software Deployment Model. Faculty
of Science, UU. 2006-01

R.J. Corin. Analysis Models for Se-
curity Protocols. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-02

P.R.A. Verbaan. The Computa-
tional Complexity of Evolving Systems.
Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers.
Formal Specification and Analysis of
Hybrid Systems. Faculty of Mathe-
matics and Computer Science and Fac-
ulty of Mechanical Engineering, TU /e.
2006-04

M. Kyas. Verifying OCL Specifi-
cations of UML Models: Tool Sup-
port and Compositionality. Faculty
of Mathematics and Natural Sciences,
UL. 2006-05

M. Hendriks. Model Checking Timed
Automata - Techniques and Applica-
tions. Faculty of Science, Mathematics
and Computer Science, RU. 2006-06

J. Ketema. Bohm-Like Trees for
Rewriting. Faculty of Sciences, VUA.
2006-07

C.-B. Breunesse. On JML: topics in
tool-assisted wverification of JML pro-
grams. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2006-
08

B. Markvoort. Towards Hybrid
Molecular Simulations. Faculty of
Biomedical Engineering, TU/e. 2006-
09

S.G.R. Nijssen. Mining Structured
Data. Faculty of Mathematics and
Natural Sciences, UL. 2006-10

G. Russello. Separation and Adap-
tation of Concerns in a Shared Data

Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nonde-
terministic and Probabilistic Choices.
Faculty of Science, Mathematics and
Computer Science, RU. 2006-12

B. Badban. Verification techniques
for Extensions of Equality Logic. Fac-
ulty of Sciences, Division of Mathemat-
ics and Computer Science, VUA. 2006-
13

A.J. Mooij. Constructive formal
methods and protocol standardization.
Faculty of Mathematics and Computer
Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques
for Hybrid Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-15

M.E. Warnier. Language Based Se-
curity for Java and JML. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-16

V. Sundramoorthy. At Home In
Service Discovery. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2006-17

B. Gebremichael. FEzxpressivity of
Timed Automata Models. Faculty of
Science, Mathematics and Computer
Science, RU. 2006-18

L.C.M. van Gool. Formalising
Interface Specifications. Faculty of
Mathematics and Computer Science,
TU/e. 2006-19

C.J.F. Cremers. Scyther - Seman-
tics and Verification of Security Pro-
tocols. Faculty of Mathematics and
Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile
Channels for FEzogenous Coordina-
tion of Distributed Systems: Seman-
tics, Implementation and Composition.
Faculty of Mathematics and Natural
Sciences, UL. 2006-21

H.A. de Jong. Flexible Heteroge-
neous Software Systems. Faculty of
Natural Sciences, Mathematics, and
Computer Science, UvA. 2007-01

N.K. Kavaldjiev. A run-time recon-
figurable Network-on-Chip for stream-
ing DSP applications. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2007-02

M. van Veelen. Considerations
on Modeling for Early Detection of
Abnormalities in Locally Autonomous
Distributed Systems. Faculty of
Mathematics and Computing Sciences,
RUG. 2007-03

T.D. Vu. Semantics and Applications
of Process and Program Algebra. Fac-
ulty of Natural Sciences, Mathematics,
and Computer Science, UvA. 2007-04

L. Brandan Briones. Theories for
Model-based Testing: Real-time and
Coverage. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-05

I. Loeb. Natural Deduction: Shar-
ing by Presentation. Faculty of Sci-

ence, Mathematics and Computer Sci-
ence, RU. 2007-06

M.W.A. Streppel. Multifunctional
Geometric Data Structures. Faculty of
Mathematics and Computer Science,
TU/e. 2007-07

N. Tréka. Silent Steps in Transi-
tion Systems and Markov Chains. Fac-
ulty of Mathematics and Computer
Science, TU /e. 2007-08

R. Brinkman. Searching in en-
crypted data. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2007-09

A. van Weelden. Putting types to
good use. Faculty of Science, Math-
ematics and Computer Science, RU.
2007-10

J.A.R. Noppen. Imperfect Infor-
mation in Software Development Pro-
cesses. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2007-11

R. Boumen. Integration and Test
plans for Complex Manufacturing Sys-
tems. Faculty of Mechanical Engineer-
ing, TU/e. 2007-12

A.J. Wijs. What to do Next?:
Analysing and Optimising System Be-
haviour in Time. Faculty of Sciences,
Division of Mathematics and Com-
puter Science, VUA. 2007-13

C.F.J. Lange. Assessing and Improv-
ing the Quality of Modeling: A Series
of Empirical Studies about the UML.

Faculty of Mathematics and Computer
Science, TU/e. 2007-14

T. van der Storm. Component-
based Configuration, Integration and
Delivery. Faculty of Natural Sci-
ences, Mathematics, and Computer
Science,UvA. 2007-15

B.S. Graaf. Model-Driven Evolution
of Software Architectures. Faculty of
Electrical Engineering, Mathematics,
and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi
for Reasoning with Binding. Faculty of
Mathematics and Computer Science,
TU/e. 2007-17

D. Jarnikov. QoS framework for
Video Streaming in Home Networks.
Faculty of Mathematics and Computer
Science, TU/e. 2007-18

M. A. Abam. New Data Structures
and Algorithms for Mobile Data. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2007-19

W. Pieters. La Volonté Machi-
nale: Understanding the FElectronic
Voting Controversy. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2008-01

A.L. de Groot. Practical Automa-
ton Proofs in PVS. Faculty of Science,
Mathematics and Computer Science,
RU. 2008-02

M. Bruntink. Renovation of Id-
tomatic Crosscutting Concerns in Em-
bedded Systems. Faculty of Electrical

Engineering, Mathematics, and Com-
puter Science, TUD. 2008-03

A.M. Marin. An Integrated Sys-
tem to Manage Crosscutting Concerns
in Source Code. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2008-04

N.C.W.M. Braspenning. Model-
based Integration and Testing of High-
tech Multi-disciplinary Systems. Fac-
ulty of Mechanical Engineering, TU/e.
2008-05

M. Bravenboer. FEzercises in Free
Syntax: Syntax Definition, Parsing,
and Assimilation of Language Con-
glomerates. Faculty of Science, UU.
2008-06

M. Torabi Dashti. Keeping Fairness
Alive: Design and Formal Verification
of Optimistic Fair Fxchange Protocols.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2008-07

I.S.M. de Jong. Integration and Test
Strategies for Compler Manufacturing
Machines. Faculty of Mechanical En-
gineering, TU/e. 2008-08

I. Hasuo. Tracing Anonymity with
Coalgebras. Faculty of Science, Math-
ematics and Computer Science, RU.
2008-09

L.G.W.A. Cleophas. Tree Al-
gorithms: Two Taxonomies and a
Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking
Markov Chains: Techniques and Tools.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2008-11

M. Farshi. A Theoretical and Exper-
imental Study of Geometric Networks.
Faculty of Mathematics and Computer
Science, TU /e. 2008-12

G. Gulesir. Evolvable Behavior
Specifications Using Context-Sensitive
Wildcards. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-13

F.D. Garcia. Formal and Com-
putational Cryptography: Protocols,
Hashes and Commitments. Faculty of
Science, Mathematics and Computer
Science, RU. 2008-14

P. E. A. Diirr. Resource-based Veri-
fication for Robust Composition of As-
pects. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-15

E.M. Bortnik. Formal Methods in
Support of SMC Design. Faculty of
Mechanical Engineering, TU/e. 2008-
16

R.H. Mak. Design and Performance
Analysis of Data-Independent Stream
Processing Systems. Faculty of Math-
ematics and Computer Science, TU/e.
2008-17

M. van der Horst. Scalable Block
Processing Algorithms. Faculty of
Mathematics and Computer Science,
TU/e. 2008-18

C.M. Gray. Algorithms for Fat Ob-
jects: Decompositions and Applica-
tions. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Sys-
tems with Data - Enumerative Meth-
ods and Constraint Solving. Faculty of
Electrical Engineering, Mathematics &
Computer Science, UT. 2008-20

E. Mumford. Drawing Graphs for
Cartographic Applications. Faculty of
Mathematics and Computer Science,
TU/e. 2008-21

E.H. de Graaf Mining Semi-
structured Data, Theoretical and Fz-
perimental Aspects of Pattern Evalua-
tion. Faculty of Mathematics and Nat-
ural Sciences, UL. 2008-22

R. Brijder. Models of Natural Com-
putation: Gene Assembly and Mem-
brane Systems. Faculty of Mathemat-
ics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of
Rewriting and Its Certification. Fac-
ulty of Mathematics and Computer
Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hy-
brid Systems: Comparison and Devel-
opment. Faculty of Mathematics and
Computer Science, TU /e. 2008-25

J. Markovski. Real and Stochastic
Time in Process Algebras for Perfor-
mance Evaluation. Faculty of Mathe-
matics and Computer Science, TU/e.
2008-26

H. Kastenberg. Graph-Based Soft-
ware Specification and Verification.
Faculty of Electrical Engineering,

Mathematics & Computer Science,
UT. 2008-27

I.LR. Buhan. Cryptographic Keys
from Noisy Data Theory and Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics & Computer Sci-
ence, UT. 2008-28

R.S. Marin-Perianu. Wireless Sen-
sor Networks in Motion: Clustering
Algorithms for Service Discovery and
Provisioning. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2008-29

M.H.G. Verhoef. Modeling and
Validating Distributed Embedded Real-
Time Control Systems. Faculty of Sci-
ence, Mathematics and Computer Sci-
ence, RU. 2009-01

M. de Mol. Reasoning about Func-
tional Programs: Sparkle, a proof as-
sistant for Clean. Faculty of Science,

Mathematics and Computer Science,
RU. 2009-02

M. Lormans. Managing Require-
ments Fvolution. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2009-03

M.P.W.J. van Osch. Automated
Model-based Testing of Hybrid Sys-
tems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant
Software Systems. Faculty of Electri-

cal Engineering, Mathematics & Com-
puter Science, UT. 2009-05

M.J. van Weerdenburg. Efficient
Rewriting Techniques. Faculty of

Mathematics and Computer Science,
TU/e. 2009-06

H.H. Hansen. Coalgebraic Mod-
elling: Applications in Automata The-
ory and Modal Logic. Faculty of Sci-
ences, Division of Mathematics and
Computer Science, VUA. 2009-07

A. Mesbah. Analysis and Testing of
Ajax-based Single-page Web Applica-
tions. Faculty of Electrical Engineer-
ing, Mathematics, and Computer Sci-
ence, TUD. 2009-08

A.L. Rodriguez Yakushev. To-
wards Getting Generic Programming
Ready for Prime Time. Faculty of Sci-
ence, UU. 2009-9

K.R. Olmos Joffré. Strategies for
Context Sensitive Program Transfor-
mation. Faculty of Science, UU. 2009-
10

J.A.G.M. van den Berg. Reason-
ing about Java programs in PVS using
JML. Faculty of Science, Mathematics
and Computer Science, RU. 2009-11

M.G. Khatib. MFEMS-Based Stor-
age Devices. Integration in FEnergy-
Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-12

S.G.M. Cornelissen. FEvaluating
Dynamic Analysis Techniques for Pro-

gram Comprehension. Faculty of Elec-
trical Engineering, Mathematics, and
Computer Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-
based Network Intrusion Detection
Systems. Faculty of Electrical En-
gineering, Mathematics & Computer
Science, UT. 2009-14

H.L. Jonker. Security Matters: Pri-
vacy in Voting and Fairness in Digi-
tal Exchange. Faculty of Mathematics
and Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping
Trust Management. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2009-16

T. Chen. Clocks, Dice and Processes.
Faculty of Sciences, Division of Math-
ematics and Computer Science, VUA.
2009-17

C. Kaliszyk. Correctness and Avail-
ability: Building Computer Algebra
on top of Proof Assistants and mak-
ing Proof Assistants available over the
Web. Faculty of Science, Mathematics
and Computer Science, RU. 2009-18

R.S.S. O’Connor. Incompleteness &
Completeness: Formalizing Logic and
Analysis in Type Theory. Faculty of
Science, Mathematics and Computer
Science, RU. 2009-19

B. Ploeger. Improved Verification
Methods for Concurrent Systems. Fac-
ulty of Mathematics and Computer
Science, TU /e. 2009-20

T. Han. Diagnosis, Synthesis and
Analysis of Probabilistic Models. Fac-
ulty of Electrical Engineering, Mathe-
matics & Computer Science, UT. 2009-
21

R. Li. Mized-Integer Evolution Strate-
gies for Parameter Optimization and
Their Applications to Medical Image
Analysis. Faculty of Mathematics and
Natural Sciences, UL. 2009-22

J.H.P. Kwisthout. The Computa-
tional Complezity of Probabilistic Net-
works. Faculty of Science, UU. 2009-23

T.K. Cocx. Algorithmic Tools for
Data-Oriented Law Enforcement. Fac-
ulty of Mathematics and Natural Sci-
ences, UL. 2009-24

A.I. Baars. Embedded Compilers.
Faculty of Science, UU. 2009-25

M.A.C. Dekker. Flexible Access
Control for Dynamic Collaborative En-
vironments. Faculty of Electrical En-

gineering, Mathematics & Computer
Science, UT. 2009-26

J.F.J. Laros. Metrics and Visual-
isation for Crime Analysis and Ge-
nomics. Faculty of Mathematics and
Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic
Code Inspections. Faculty of Electrical
Engineering, Mathematics, and Com-
puter Science, TUD. 2010-01

M.R. Neuhaufler. Model Check-
ing Nondeterministic and Randomly
Timed Systems. Faculty of Electri-
cal Engineering, Mathematics & Com-
puter Science, UT. 2010-02

J. Endrullis. Termination and Pro-
ductivity. Faculty of Sciences, Divi-
sion of Mathematics and Computer
Science, VUA. 2010-03

T. Staijen. Graph-Based Specifi-
cation and Verification for Aspect-
Oriented Languages. Faculty of Elec-
trical Engineering, Mathematics &
Computer Science, UT. 2010-04

	cover
	staijen_binnenwerk
	Introduction
	Aspect-Oriented Programming
	Separation of Concerns
	AOP = Quantification & Obliviousness
	Symmetric vs. Asymmetric AOP

	Motivation: The disadvantages of Obliviousness
	Aspect Interference

	Verification and Graph Transformation
	Outline of the Thesis
	Overview

	Controlled Graph Transformation
	Introduction
	Graph Transformations
	Graphs and Morphisms
	Graph Production Rules
	The GROOVE Notation
	Attributed Graphs
	Nested Rules
	Exploration Strategies

	Rule Systems and Automata
	Automata
	System Automata
	Control Automata
	Combining System Behaviour and Control

	Control Language
	Semantics

	Guarded Control Automata
	Equivalence

	Implementation & Usage
	Conclusions
	Related Work

	Future Work
	Contributions

	An Execution Semantics for Composition Filters
	Introduction
	Introduction to Composition Filters
	The Composition Filters Model
	The Composition Filters Language
	Meta Filters

	The Goal and the Approach
	Goal
	Approach

	Abstract Syntax Graphs
	Control Flow Semantics
	Control Flow Construction
	The Control Flow Specification Language
	Control Flow Semantics
	Example

	Execution Graphs
	Value Graph
	Frame Graph
	Execution Graph

	Runtime Semantics
	Filter Actions
	The Substitution Part
	Filter Matching

	Evalution
	Conclusions
	Related Work on AOP Semantics
	Future Work: Possible Extensions
	Contributions

	Specification and Simulation of Featherweight AspectJ
	Introduction
	Assignment Featherweight Java with Around Advice
	The Featherweight AspectJ Language
	Run-time Semantics

	Graph-Based States
	AFJ Program Graph
	Aspect Program Graph
	Run-time Graph

	Language Semantics
	AFJ semantics
	FAJ Semantics

	Correctness of the Semantics
	Notion of Correctness
	The SOS Semantics
	From Programs to Graphs
	From Configurations to Graphs
	Proof of Correctness

	Graph-Transformation-Based Simulation
	Evaluation of the Semantics
	Observations
	Evaluation
	Comparison with CF

	Conclusion
	Related Work
	Contributions

	Analysing Aspect Interference on Shared Join Points
	Introduction
	Problem Definition
	Aspect Interference at Shared Join Points
	Example Aspects
	Example Code

	Approach to Aspect Interference Detection
	Analysis
	Implementation Requirements

	Extended Composition Filters Semantics
	Message Creation
	Predicate Evaluation
	Non-Deterministic Scheduling of Filtermodules
	Filter Actions of the Example

	Experimentation
	Generated State Spaces
	Analysis Report

	Evaluation of the Approach
	Detection of Interference
	Modularity
	Usability
	Scalability
	Tool support

	Conclusions
	Related Work
	Future Work
	Contribution

	Verification of Dynamic Constraints
	Introduction
	Motivation by Example: the Observer Pattern
	The Observer Pattern in Java
	AspectJ
	The Observer Pattern using AspectJ

	Approach to Verification of Aspect Oriented Programs
	Semantics
	Multi-Threaded Java
	Java Semantics
	Aspects
	Ad Hoc Rules: Collection Handling
	Example

	Verification of Observer Pattern Implementations
	Harness Semantics
	Verification Semantics

	Experimentation
	Evaluation of the Approach
	Java and AspectJ support
	Ability to Verify Dynamic Constraints
	Implementation Independence
	Automation
	Scalability

	Conclusions
	Related Work
	Future Work
	Contributions

	Conclusions
	Introduction
	Controlled Graph Transformation
	Graph-Based Specification of AOP Execution Semantics
	Composition Filters
	Featherweight AspectJ
	Java and AspectJ
	Future Work

	Analysis of Aspect Interference on Shared Joinpoints
	Analysis of System Properties under Concurrent Execution
	Reflection and Future Work

	Samenvatting
	Bibliography

